
Establishing Evidence-Based Practice with
Structural Equation Modeling

Mike W.-L. Cheung1

1 March 2018
1Department of Psychology, National University of Singapore (NUS)

1



A little bit background about me (1)

• PhD: Quantitative psychology, the Chinese University of Hong
Kong

• Associate Professor:
• Department of Psychology, National University of Singapore

(NUS)
• Department of Management & Organisation (courtesy

appointment), NUS

• Research areas: Quantitative methods
• Structural equation modeling, meta-analysis, multilevel model,

analysis of missing data, longitudinal data analysis, analysis of
non-normal data, etc.
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A little bit background about me (2)

• Associate editors:
• Research Synthesis Methods
• Neuropsychology Review
• Frontiers in Psychology (Quantitative Psychology and

Measurement)

• Editorial boards:
• Psychological Methods
• Psychological Bulletin
• Journal of Management (Methods task force)
• Health Psychology Review (Research methods and data

analysis)
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Goals of today’s talk

• Introduce the basics of SEM.
• Introduce how to apply and interpret SEM in our work.
• Note: We cannot cover how to conduct the analyses in only 2

hours!
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What is SEM?

• SEM represents a family of related multivariate techniques.
• It is also known as covariance structural analysis, covariance

structure model, analysis of covariance structures, analysis of
correlation structure, LISREL model (in the old days), etc.

• It is used to test hypothesized models (theory), which can be
used to provide empirical evidence for evidence-based
practice/research.
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Relationship with other statistical techniques

• Many statistical techniques we have learned before are special
cases of SEM, for example, independent and dependent t-tests,
ANOVA, ANCOVA, MANOVA, multiple regression, path
analysis, confirmatory factor analysis (CFA), item response
theory (IRT), multilevel models, and meta-analysis, etc.

• SEM has been extended to combine with other statistical
techniques, for example, mixture model, missing data
techniques, generalized linear model, categorical data analysis.
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Popularity of SEM

• There is no surprise that more and more publications are using
SEM as the research tool.
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Models on relationship among the constructs

• Most statistical techniques are limited to one dependent
variable (DV).

• SEM allows researchers to test models with a complicated
relationship.

• Models can be represented by path diagrams.
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Observed vs. latent variables

• Most constructs in social and behavioral sciences, e.g.,
psychology, are latent or abstract. They cannot be directly
measured or observed.

• Latent variables:
• Abstract and hypothetical constructs.
• For example, motivation, stress, depression, intelligence, and

satisfaction.

• Observed or measured variables:
• Indicators of the latent constructs.
• For example, items to measure depression, test scores of

intelligence.
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Path analysis

• Linear relationships among observed variables (rectangles).
• No latent variable.
• Multiple regression may also be used to fit this model.
• Research question to answer: What is the mechanism for

explaining the dependent variables?
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Confirmatory factor analysis (CFA)

• Linear relationships among latent and observed variables.
• No direct effect among the latent variables.
• Research question to answer: What is the construct validity of

the psychological constructs?
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SEM

• It combines both CFA and path analysis.
• It may include direct effects among the latent variables.
• Research question to answer: What is the mechanism for

explaining the dependent variables in the latent constructs?
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Latent growth model

• What are the growth trajectories of the individuals over time?
• What variables can be used to predict the growth trajectories?
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A CFA example

• As an example, we want to fit a two-factor model on intrinsic
(f1) and extrinsic (f2) motivation.

• Variable names: x1 to x6 (n=300)
• Research question: Does the CFA model fit the data?
• By default, the loading of the first item per factor is fixed at

1.0 in most SEM packages.
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Model evaluation in SEM

• There are two major tasks in model evaluation.
• Overall model fit: testing whether the proposed model as a

whole fits the data.
• Individual parameter estimates: testing whether the

parameter estimates are significant.
• Note. If the overall model does not fit the data, we do not test

and interpret the parameter estimates.
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Chi-square test statistics (1)

• One major difference between SEM and other statistical
techniques is how research hypotheses are tested:1

• Reject-support: Rejecting the null hypothesis supports the
researcher’s belief (e.g., t-test, ANOVA, regression analysis, and
MANOVA).

• Accept-support: Accepting the null hypothesis supports the
researcher’s belief (e.g., SEM).

• Based on this rationale, SEM users usually do not want to
reject the null hypothesis (the proposed model).

1Steiger, J. H., & Fouladi, R. T. (1997). Noncentrality interval estimation and
the evaluation of statistical models. In L. L. Harlow, S. A. Mulaik, & J. H.
Steiger (Eds.), What if there were no significance tests? (pp. 221-257). Mahwah,
NJ: Erlbaum.
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Chi-square test statistics (2)

• Chi-square test (also known as the likelihood ratio (LR) test):
• If the proposed model is correct, the test statistic has a

chi-square distribution.
• This is a “badness-of-fit” index: large chi-square statistic

indicates a poor fit.
• The proposed model is rejected at .05 if the test statistic is

larger than the critical value.
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Issues of chi-square test statistics (1)

• SEM users rarely depend on the chi-square test because of
various issues.

• Model misspecification:
• Are there any “true” models in the world?
• Most SEM users consider models as approximations of the

reality.
• George Box’s favorite quote: “Essentially, all models are wrong,

but some are useful.”
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Issues of chi-square test statistics (2)

• Violation of underlying assumptions:
• Data (or residues) are normally distributed.
• Large samples are required.
• When data are not normally distributed, especially in clinical

studies, or in small sample sizes (e.g., N=100 or 200), the test
statistic may not follow a chi-square distribution.

• Sensitive to sample size:
• All proposed models will be rejected when the sample sizes are

large enough.
• Large samples work against researchers!
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Goodness-of-fit indices

• Many SEM users are aware of the problems associated with the
chi-square test.

• There are many goodness-of-fit indices developed as alternative
measures.

• There are more than 20 goodness-of-fit indices in the market!
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Incremental fit indices (1)

• They measure the relative improvement in fit by comparing the
target (or proposed) model against the baseline model.

• The baseline model is usually the model stating that all
variables are uncorrelated. It is known as the independence
model. It can be considered as the worst model.
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Incremental fit indices (2)

• Normed fit index (NFI):

• χ2
B−χ2

T
χ2

B

• χ2
T and χ2

B are the chi-square statistics of the target and the
baseline (or null) models.

• It measures the proportionate reduction in the chi-square values
when moving from the baseline model to the hypothesized
model.

• Non-normed fit index (NNFI), which is known as Tucker-Lewis
index (TLI), is similar to the NFI with an adjustment of the
complexity of the model.
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Incremental fit indices (3)

• Comparative fit index (CFI): 0 ≤ CFI ≤ 1
• What is a well-fitted model?

• Conventional rule of thumb (without any empirical support): at
least > 0.9.

• The cut-offs are more demanding now (see below).
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Residual-based indices (1)

• When the model fits well, the residuals (the difference between
the model implied covariance matrix and the sample covariance
matrix) should be small.

• Standardized root mean square residual (SRMR)
• It measures the average value of the standardized residuals.
• It ranges from zero (perfect fit) to one (very poor fit).
• Rule of thumb: A well-fitted model < .05.
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Residual-based indices (2)

• Root mean square error of approximation (RMSEA)2

• Similar to SRMR.
• Advantage: Confidence intervals on RMSEA are available on

most SEM packages.
• Rules of thumb:

• Close fit: < 0.05
• Reasonable fit: 0.05 - 0.08
• Inadequate fit: > 0.1

2Browne, M. W., & Cudeck, R. (1993). Alternative ways of assessing model fit.
In K. A. Bollen & J. S. Long (Eds.), Testing Structural Equation Models
(pp. 136-162). Newbury Park, CA: Sage.
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What do we need to report in research articles?

• We usually report the chi-square test statistic and it associated
df and p-value, some incremental fit indices and some residual
based indices.

• What is a well-fitted model? One popular approach is the
combinational rules:3

• NNFI (TLI) or CFI > 0.95 and SRMR < .09 OR RMSEA < .05
and SRMR < .06

• Although this recommendation has been widely applied, it is
not without criticisms.4

3Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit indices in covariance
structure analysis: Conventional criteria versus new alternatives. Structural
Equation Modeling, 6, 1-55.

4Marsh, H. W., & Hau, K. T., & Wen, Z. (2004). In search of golden rules:
Comment on hypothesis-testing approaches to setting cutoff values for fit indices
and dangers in overgeneralizing Hu and Bentler’s (1999) findings. Structural
Equation Modeling, 11, 320-342. 27



Our CFA example (intrinsic and extrinsic motivation)

• The proposed model fits the data well with χ2(8) = 2.45, p =
.96,CFI = 1.00,RMSEA = 0.000,SRMR = .015.
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Parameter estimates (1)

• The parameter estimates are relative to the fixed loadings.
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Parameter estimates (2)

• Sometimes, it is easier to interpret the standardized parameter
estimates.
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Comparing non-nested models

• Sometimes, the models being compared are non-nested. That
is, we cannot convert a model into the other by imposing
constraints.

• Chi-square difference test is inappropriate.
• Akaike’s information criterion (AIC) and the Bayesian

information criterion (BIC) measure the parsimonious fit that
considers both the model fit and the no. of parameters
estimated.

• A smaller value indicates the model is better in compromising
between the model fit and the model complexity.

• Choose the model with the smallest AIC or BIC.
• They can be used to compare nested and non-nested models.
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Structural equation models

• There are two basic components in SEM.
• Measurement (CFA) model:

• Are the items grouped according to the theory?
• Assessment of convergent and discriminant validity of

measurement.
• CFA tests construct validity, not reliability.

• Structural model:
• What are the relationships among the latent variables?
• Assessment of predictive validity.
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An example: Stability of alienation

• Wheaton, et al. (1977) studied the stability of attitudes over
time (1967 and 1971). These include alienation and the
relation to background variables such as education and
occupation.5

• Alienation: Anomia subscale (Anomia), and Powerlessness
subscale (Power)

• Socioeconomic status (SES): Duncan’s Socioeconomic Index
(SEI), and Years of schooling (EDU)

5Wheaton, B., Muthen, B., Alwin, D., & Summers, G. (1977). Assessing
reliability and stability in panel models. In D. R. Heise (Ed.): Sociological
Methodology (pp. 84-136). San Francisco: Jossey-Bass.
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Correlated residuals

• Since Anomia subscale and the Powerlessness subscale were
measured twice (1967 and 1971), it is reasonable to expect
that the measurement errors may be correlated.
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Comparing the models with and without correlated residuals

• Results: χ2(4,N = 932) = 4.74, p = .32; CFI=1.00; TLI=1.00
and RMSEA=0.014. The model fits the data very well.

• Since these two models (with and without correlated errors) are
nested, we can use the chi-square difference test to compare
them: χ2(2) = 66.81, p < .001.
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Latent growth modeling (LGM)

• Why do researchers want to conduct longitudinal studies?6

• To address intra-individual differences:
• Similar to the within factors in repeated measures ANOVA;
• Variation over time within individuals.

• To address inter-individual differences:
• Similar to the between factors or covariates in repeated ANOVA;
• Variation among individuals;
• To draw casual inferences.

6Raudenbush, S. W. (2001). Comparing personal trajectories and drawing
causal inferences from longitudinal data. Annual Review of Psychology, 52,
501-525.
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Advantages of LGM to conventional repeated measures
ANOVA

• Each participant has his/her growth curve.
• The number of occasions (incomplete data) can be different for

different individuals.
• Time-varying (dynamic) and time-invariant (static) predictors

can be handled. Repeated measures ANOVA cannot handle
time-varying covariates.

• It can be extended to several levels, e.g., repeated measures of
students who are nested within classes and schools.
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Types of LGM

• Unconditional LGM:
• There is no predictor.
• We try to capture the growth patterns of the participants.

• Conditional LGM:
• We try to explain why different participants may have different

patterns of growth by using subject characteristics as predictors.
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An example

• The sample was drawn from Children of the National
Longitudinal Survey of Youth (N=221).

• Time-varying variable:
• Antisocial behavior: Anti0-Anti3 (time 0 to time 3)

• Time-invariant covariates:
• Gender: 0: females and 1: males
• Cog (cognitive support): continuous variable
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Main research questions

• What are the growth patterns of antisocial behavior over time
(intra-individual differences)?

• What predict the growth patterns (intercepts and slopes) of
antisocial behavior over time (inter-individual differences)?
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Baseline model

• The intrac class correlation (ICC) =
Var(ζI)/(Var(ζI) + Var(σ2

I )), which indicates the proportion of
between-subject variation to the total variation.
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Results:

• χ2(11,N = 221) = 56.416, p < .001; CFI=0.819; TLI=0.901
and RMSEA=0.137. As expected, the baseline model does not
fit the data well.

• ICC=1.579/(1.579+1.741)=.48.
• What if the baseline model fits the data well?
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Some observations from the graphical plots (1)

• We may fit a straight line on each child.
• Each child has his/her regression line.
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Some observations from the graphical plots (2)

• There are an average intercept and average slope (fixed
effects).

• There is a variation on the intercepts and the slopes (random
effects).
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Linear growth model

• Fixed effects: Average intercept and average linear slope of
growth.

• Random effects: Variances of the intercept and slope and
their covariance.
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Results

• The linear growth model fits the data well with
χ2(df = 5) = 3.16, p = .68, CFI=1.00, TLI=1.00,
RMSEA=0.00 and SRMR=0.02

• The factor loadings are fixed. Thus, there is no estimate and
standard error.

• Fixed effects:
• µ̂I = 1.545, p < .01: the average intercept of antisocial

behavior is 1.545.
• µ̂S = 0.179, p < .01: the average slope of antisocial behavior is

0.179.

• Random-effects:
• Var(ζ̂I) = 0.991: the variation on intercepts across subjects.
• Var(ζ̂S) = 0.10: the variation on slopes across subjects.
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Conditional latent growth model with time-invariant predictors

• It is often of interest to predict why some individuals have
larger intercepts or slopes by using cognitive support (C) and
gender (G) as covariates.
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Results: Gender effect

• Males, in general, are more anti-social than females do.
• The growth trend, however, is the same.
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Results: Cognitive support effect

• Initially, the level of anti-social behavior is the same.
• Children with less cognitive support from parents have a larger

increase in anti-social behaviors.
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Conclusion

• SEM is a powerful tool to address research questions in social
and behavioral sciences.

• The findings in SEM provide evidence supporting the
evidence-based practice/research.

• Other useful topics not discussed in this talk:
• Handling missing data
• Handling nonnormal data
• Handling categorical data
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Thank you for your attention!

• Any questions?
• My website: http://mikewlcheung.github.io/
• Source: http://dilbert.com/strip/2012-12-12
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