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Social networks

Social networks represent a new phenomenon of our life.
The growing popularity of social networks in the Web dates back
to 1995 when American portal Classmates.com was launched. This
project facilitated the soon appearance of online social networks
(SixDegrees, LiveJournal, LinkedIn, MySpace, Facebook, Twitter,
YouTube, and others) in the early 2000s.
In Russia, the most popular networks are VKontakte and
Odnoklassniki.
Social networks are visualized using social graphs. Graph theory
provides main analysis tools for social networks. In particular, by
calculating centrality measures for nodes and edges one may detect
active participants (members) of a social network.



Graph construction for social network

Twitter is a popular online news and social networking service
based on short messages called tweets.
Tweets were originally restricted to 140 characters, but on
November 7, 2017, the limit was doubled to 280 characters for all
languages except Japanese, Korean and Chinese.
As its attributes each tweet has author, text content and author’s
residence. A retweet is a tweet is which one author refers to
another. In a message such reference has the form
“@nameofAnotherAuthor.’’
An example of a tweet is
“Attended the lecture together with @VictorPetrov.’’



Graph of social network

Let us construct a graph of this social network.
Graph nodes are authors.
Edges correspond to retweets. If there exists a retweet of user j by
user i and vice versa, we may draw an edge between nodes i and j.
Authors communicate with each other, thereby forming different
communities. A community is a certain group of users with
common interests (e.g., political, professional, etc.). Additional
information for a structural analysis of a social network graph can
be extracted from the messages of network members.



Mathematical web-portal Math-Net.ru
Thecollaboration graph from the Russian mathematical portal
Math-Net.ru. The general amount of the authors is equal to 78839.



Vector space model
We will adopt the vector space model (VSP) to define the
weights of a link (edge) in a given graph. Let each author i , i ∈ N,
be associated with the so-called bag of words. This is a document
di containing all words mentioned in the text of all his tweets.
Form a large bag of words from all documents of a community
under study, i.e., D = ∪n

i=1di . Assume it consists of K words.
For each word k ∈ di (also called term), calculate the frequency of
occurrence in a document di and denote it by wik . This is the
weight of word k in a document di . Then each document di , i ∈ N,
is characterized by a K -dimensional vector di = (wi1,wi2, ...,wiK )
in space RK . The weight of a link between two authors i and j
(i.e., between documents di and dj) can be defined as the cosine
measure of vectors the vectors di and dj , i.e.,

cos(di , dj) =
(di , dj)

|di ||dj |
.



Vector space model

If the cosine measure is 0 or close to 0, there exists no link at all or
the link is weak. Conversely, if this measure is close to 1, the link
between the corresponding authors is strong.
Note that messages often contain words of little information such
as prepositions, copulas, etc. Then the weight of word k in a
document di is measured using the term frequency-inverse
document frequency

w ′
ik = wik + log

n
|{di ∈ D : k ∈ di}|

,

where the first summand denotes the frequency of occurrence for
word k in the document di (as before) while the second summand
characterizes how often this word is mentioned in all other
documents from D. With this definition of weights, the links
between two documents are measured by analogy to the previous
case.



Social networks
Here is the weighted graph extracted from the popular Russian
social network VKontakte. The graph corresponds to the online
community devoted to game theory. This community consists of
483 participants. As a weight of a link we take the number of
common friends between the participants.

.: Principal component of the community Game Theory in the social network
VKontakte (number of nodes: 275, number of edges: 805 and mean path’s length:
3.36).



Mathematical web-portal Math-Net.ru
On fig. 2 it is presented the subgraph from the Russian
mathematical portal Math-Net.ru. The general amount of the
authors on the mathematical portal Math-Net.ru now is equal to
78839.



Betweenness Centrality

One of the basic concepts in the analysis of the social networks is
betweenness centrality, a measure of centrality that is based on
how well a node i is situated in terms of the paths that it lies on
[Freeman]:

cB(i) =
1

nB

∑
s,t∈V

σs,t(i)
σs,t

, (1)

where σs,t is the total number of geodesics (shortest paths)
between nodes s and t, σs,t(i) is the number of geodesics between
s and t that i lies on. The denominator nB captures that the node
i could lie on paths between as many as nB = (n − 1)(n − 2)/2
pairs of other nodes.



Example

.: Network of 11 nodes

cB(1) = 0?



Cooperative game. Characteristic function
Consider a game where the graph g is a tree which consists on n
nodes. Characteristic function is determined by the following way.
Every direct connection gives to coalition S the impact r, where
0 ≤ r ≤ 1.
Moreover, players obtain an impact from non-direct connections.
Each path of length 2 gives to coalition S the impact r2, a path of
length 3 gives to coalition the impact r3, etc.
For any coalition S we obtain

v (S) = a1r + a2r2 + · · ·+ akrk + · · ·+ aLrL =
L∑

k=1
akrk , (2)

where L is a maximal distance between two nodes in the coalition;
ak is the number of paths of length k in this coalition.

v(i) = 0, ∀i ∈ N.



Characteristic function. Example

.: Tree of six nodes.



For the tree on fig. 1 we find L = 4, a1 = 5, a2 = 5, a3 = 3,
a4 = 2. Consequently, the value of grand-coalition is

v (N) = 5r + 5r2 + 3r3 + 2r4.

For coalition S = {1, 2, 4, 5} L = 2, a1 = 3, a2 = 3 and we obtain

v (S) = 3r + 3r2.



Allocation rule
We propose here the procedure of allocation the general gain v(N)
to each player i ∈ N.
Stage 1. Two direct connected players obtain r. Individually, they
don’t receive nothing. So, each of them hopes to receive at least
r/2. If player i has some direct connections then she receives the
value r/2 times the number of paths of length 1 wnich contain the
node i.
Stage 2. Three connected players obtain r2, so each of them must
receive r2/3.
Arguing the same way we obtain the allocation rule of the
following form:

Yi (v , g) =
Ai

1
2 r + Ai

2
3 r2 + · · ·+

Ai
L

L + 1 rL =
L∑

k=1

Ai
k

k + 1 rk , (3)

where Ai
k is the number of all paths of length k which contain the

node i.



Example

.
Let us calculate the payoff to player 2 in example 1. Mark all paths
which contain the node 2. The paths of length 1 are: {1,2}, {2,4},
{2,5}, hence A2

1 = 3. The paths of length 2 are: {1,2,4}, {1,2,5},
{4,2,5}, {2,1,3}, so A2

2 = 4. The paths of length 3: {3,1,2,4},
{3,1,2,5}, {2,1,3,6}, A2

3 = 3. The paths of length 4 are:
{4,2,1,3,6}, {5,2,1,3,6}, A2

4 = 2. Consequently,

Y2 =
3
2 r + 4

3 r2 +
3
4 r3 +

2
5 r4.



Generating function for computing the Myerson value

Consider the tree gp = (N,E) with the root in the node p.
Introduce the generating function

ϕp(x) =
L∑

k=1
αp

kxk

where αp
k is the number of paths which consist on k nodes (length

k − 1) and contain the node p.
To find this value we use modified algorithm proposed by Jamison
for computing the generating function for the number of sub-trees
of a tree g which contain k nodes of the tree g.



Calculate the generating function via recurrence relations.
First, we determine in final nodes q of the tree gp

ϕq(x) = x .

Denote l the maximal length {p, . . . , q}. Consider the nodes q
such that the length of path {p, . . . , q} is equal to l − 1. If it is not
the root p then assume

ϕq(x) = x
(

1 +
d∑

i=1
ϕqi (x)

)
where the sum is calculated in all descendants qi , i = 1, . . . , d of
the node q. Continue the process until l = 2. For l = 2 the
generating function is determined for all descendants of p.

ϕp(x) = x

1 +
d∑

i=1
ϕqi (x) +

∑
i 6=j

ϕqi (x)ϕqj (x)





Example

.: Tree of six nodes.



Example

For the tree in example 1 for first player we obtain
ϕ4(x) = ϕ5(x) = ϕ6(x) = x ;
ϕ2(x) = x(1 + ϕ4(x) + ϕ5(x)) = x(1 + 2x);
ϕ3(x) = x(1 + ϕ6(x)) = x(1 + x);
ϕ1(x) = x(1 + ϕ2(x) + ϕ3(x) + ϕ2(x)ϕ3(x)) =
x + 2x2 + 4x3 + 3x4 + 2x5.
It yields
A1

1 = α1
2 = 2;

A1
2 = α1

3 = 4;
A1

3 = α1
4 = 3;

A1
4 = α1

5 = 2.



Cooperative game and the Myerson value

Myerson allocation rule

Y (v , g) = (Y1(v , g), . . . ,Yn(v , g)),

is uniquely determined by the following axioms:
A1. If S is a component of g then the members of the coalition S
ought to allocate to themselves the total value v(S) available to
them, i.e ∀S ∈ N|g ∑

i∈S
Yi(v , g) = v (S) . (4)

A2. ∀g , ∀ij ∈ g both players i and j obtain equal payoffs after
adding or deleting a link ij,

Yi (v , g)− Yi (v , g − ij) = Yj (v , g)− Yj (v , g − ij) . (5)



Myerson value for unweighted network

Allocation rule (6) satisfies A1-A2.

Yi (w , g) = σ1(i)
2 r + σ2(i)

3 r2 + · · ·+ σL(i)
L + 1 rL =

L∑
k=1

σk(i)
k + 1 rk , (6)

where σk(i) is a number of the paths of the length k which include
i.
Theorem.This allocation rule is the Myerson value.



Example. Network of six nodes

.: Network of six nodes.

For the network N = {A,B,C ,D,E ,F} we find L = 3, a1 = 9,
a2 = 4, a3 = 4. Consequently, the value of grand-coalition is

v (N) = 9r + 4r2 + 4r3.

For coalition S = {A,B,C ,D} we have L = 2, a1 = 5, a2 = 2 and
we obtain

v (S) = 5r + 2r2.



Example. Myerson value

Let us calculate the Myerson value for player A in Example 1 using
the allocation rule (6). Mark all paths which contain node A.
The paths of length 1 are: {A,B}, {A,C}, {A,D}, hence aA

1 = 3.
The paths of length 2 are: {B,A,D}, {C,A,D}, {A,D,E}, {A,D,F},
so aA

2 = 4.
The paths of length 3: {B,A,D,E}, {B,A,D,F}, {C,A,D,E},
{C,A,D,F}, so aA

3 = 4.
Consequently,

YA =
3
2 r + 4

3 r2 + r3.



Network partitioning. Nash stability

The following algorithm for network partitioning based on the
Myerson value:
Start with any partition of the network N = {S1, . . . , SK}.
Consider a coalition Sl and a player i ∈ Sl . In cooperative game
presented by the graph g |Sl we find the Myerson value for player i ,
Yi(g |Sl). That is reward of player i in coalition Sl .
Suppose that player i decides to join the coalition Sk . In the new
cooperative game with partial cooperation presented by the graph
g |Sk ∪ i we find the Myerson value Yi(g |Sk ∪ i).
So, if for the player i ∈ Sl : Yi(g |Sl) ≥ Yi(g |Sk ∪ i) then player i
has no incentive to join to new coalition Sk , otherwise the player
changes the coalition.
Defonition. The partition N = {S1, . . . , SK} is the Nash stable if
for any player there is no incentive to move from her coalition.



Nash stability

The network

Natural way of partition here is {S1 = (A,B,C),S2 = (D,E ,F )}.
Let us determine under which condition this structure will present
the stable partition.
For coalition S1 the payoff v(S1) = 4r . The payoff of player A is
YA(g |S1) = r . Imagine that player A decides to join the coalition
S2.



Nash stability

Coalition S2 ∪ A has payoff v(S2 ∪ A) = 5r + 2r2.
The imputation in this coalition is
YA(g |S2 ∪ A) = r/2 + 2r2/3,YD(g |S2 ∪ A) =
3r/2 + 2r2/3,YE (g |S2 ∪ A) = YF (g |S2 ∪ A) = 3r/2 + r3/3.
We see that for player A it is profitable to join this new coalition if
r/2 + 2r2/3 > r , or r > 3/4. Otherwise, the coalition structure is
Nash stable.
Thus, for the network in Fig. 1 the Myerson value approach will
give the partition {S1 = (A,B,C),S2 = (D,E ,F )} if r < 3/4 and,
otherwise, it leads to the grand coalition.



Hedonic coalition game approach

Game with hedonic coalitions, where a player’s payoff is completely
determined by the identity of other members of his coalition
[Bogomolnaia, Jackson].
Assume that the set of players N = {1, . . . , n} is divided into K
coalitions: Π = {S1, . . . , SK}. Let SΠ(i) denote the coalition
Sk ∈ Π such that i ∈ Sk . A player i preferences are represented by
a complete, reflexive and transitive binary relation �i over the set
{S ⊂ N : i ∈ S}. The preferences are additively separable if there
exists a value function vi : N → R such that vi(i) = 0 and

S1 �i S2 ⇔
∑
j∈S1

vi(j) ≥
∑
j∈S2

vi(j).



Hedonic coalition game approach

The preferences {vi , i ∈ N} are symmetric vi(j) = vj(i) = vij = vji ,
∀i , j ∈ N.
Definition. The network partition Π is Nash stable, if
SΠ(i) �i Sk ∪ {i} for all i ∈ N,Sk ∈ Π ∪ {∅}. In the Nash-stable
partition, there is no player who wants to leave her coalition.
A potential of a coalition partition Π = {S1, . . . , SK} is

P(Π) =
K∑

k=1
P(Sk) =

K∑
k=1

∑
i,j∈Sk

vij . (7)



Network partitioning

Start with any partition of the network N = {S1, . . . , SK}. Choose
any player i and any coalition Sk different from SΠ(i). If

Sk ∪ {i} �i SΠ(i)

assign node i to the coalition Sk ; otherwise, keep the partition
unchanged and choose another pair of node-coalition, etc.
Since the game has the potential (7), the above algorithm is
guaranteed to converge in a finite number of steps.
Proposition. If players’ preferences are additively separable and
symmetric (vii = 0, vij = vji for all i , j ∈ N), then the coalition
partition Π giving a local maximum of the potential P(Π) is the
Nash-stable partition.



Network partitioning

Define a value function v with a parameter α ∈ [0, 1] is as follows:

vij =


1 − α, (i , j) ∈ E ,
−α, (i , j) /∈ E ,
0, i = j.

(8)

For any subgraph (S,E |S), S ⊆ N, denote n(S) as the number of
nodes in S, and m(S) as the number of edges in S. Then, for the
value function (8), the potential (7) takes the form

P(Π) =
K∑

k=1

(
m(Sk)−

n(Sk)(n(Sk)− 1)α
2

)
. (9)



Decomposition of network

Introduce a special decomposition of the network into the cliques.
At first, let us find a maximum clique S1 in the network G (a
maximum clique of a graph, is a clique, such that there is no clique
with more vertices).
Skip all vertices of S1 from G and consider the new network G ′.
Let us find a maximum clique S2 in the network G ′ and continue
this procedure until we derive the partition {S1, ..., SK} of the
network G into cliques.
Call this partition sequential decomposition of the network into
maximum cliques.



Network partitioning

Proposition 2. If α = 0, the grand coalition partition ΠN = {N}
gives the maximum of the potential (8). Whereas if α → 1, the
maximum of (9) corresponds to a network sequential
decomposition into maximum cliques.



Network partitioning
Example. Consider graph G = G1 ∪ G2 ∪ G3 ∪ G4 Which consists
of n = 26 nodes and m = 78 edges. This graph includes 4 full
connected subgraphes: (G1, 8, 28) with 8 vertices connected by 28
links, (G2, 5, 10), (G3, 6, 15) and (G4, 7, 21). Subgraph G1 is
connected with G2 by 1 edge, G2 with G3 by 2 edges, and G3 with
G4 by 1 edge.

.: Graph with four connected subgraphs



Network partitioning

Firstly, find the potentials (9) for large-scale decompositions of G
for any parameter α ∈ [0, 1]. It is easy to check, that
P(G) = 78 − 325α, P({G1,G2 ∪ G3 ∪ G4}) = 77 − 181α,
P({G1,G2 ∪ G3,G4}) = 76 − 104α,
P({G1,G2,G3,G4}) = 74 − 74α.
Other coalition partitions give smaller potentials:
P({G1 ∪ G2,G3 ∪ G4}) = 76 − 156α < 76 − 104α,
P({G1 ∪ G2 ∪ G3,G4}) = 77 − 192α < 77 − 181α,
P({G1,G2,G3 ∪ G4}) = 75 − 116α < 76 − 104α,
P({G1 ∪ G2,G3,G4}) = 75 − 114α < 76 − 104α.



Network partitioning

Nash-stable coalition partitions in Example 2.

α coalition partition potential
[0, 1/144] G1 ∪ G2 ∪ G3 ∪ G4 78 − 325α

[1/144, 1/77] G1,G2 ∪ G3 ∪ G4 77 − 181α
[1/77, 1/15] G1,G2 ∪ G3,G4 76 − 104α
[1/15, 1] G1,G2,G3,G4 74 − 74α



Network partitioning

For the unweighted version of the network example presented in
Fig, there are only two stable partitions: Π = N for small values of
α ≤ 1/9 and Π = {{A,B,C}, {D,E ,F}} for α > 1/9.



Network ”Zachary karate club”

.: Zachary karate club network.

Zachary [1977] observed 34 members of a karate club over a
period of two years. Due to a disagreement developed between the
administrator of the club and the club instructor there appear two
new clubs associated with the instructor (node 1) and
administrator (node 34) of sizes 15 and 19, respectively.



Network ”Zachary karate club”

Girvan, Newman [2002] divide the network into two groups of
roughly equal size using the hierarchical clustering tree. They show
that this split corresponds almost perfectly with the actual division
of the club members following the break-up. Only one node, node
3, is classified incorrectly.



Hedonic game approach

Let us now apply the hedonic game approach to the karate club
network. We start from the final partition N = {S15,S19}, which
was obtained in Girvan, Newman.
We calculate the potential for grand-coalition P(N) = 78 − 561α
and for partition P(S15,S19) = 68 − 276α.
If α < 2/57, P(N) is larger than P(S15,S19), so partition
{S15,S19} is not Nash-stable.
For α = 2/57 the potential increases if the node 3 moves from S19
to S15. For the new partition P(S16,S18) = 68 − 273α.
For α = 5/144 the potential increases if the node 10 moves to S16.
Thus, for α ≥ 10/289 the Nash-stable partition is

S17 = {1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 17, 18, 20, 22}∪{N\S17}.

Notice that in this new partition the node 3 belongs to the “right’’
coalition.



Modularity

Define a value function via the configuration random graph model.
The configuration random graph model can be viewed as a null
model for a network with no community structure. Namely, the
following value function can be considered:

vij = βij

(
Aij − γ

didj
2m

)
, (10)

where Aij is a number of links between nodes i and j, di and dj are
the degrees of the nodes i and j, respectively, m = 1

2
∑

l∈N dl is
the total number of links in the network, and βij = βji and γ are
some parameters.



Modularity

Thus, we have now a game-theoretic interpretation of the
modularity function. Namely, the coalition partition
Π = {S1, . . . , SK} which maximises the modularity

P(Π) =
K∑

k=1

∑
i,j∈Sk ,i 6=j

(
Aij −

didj
2m

)
(11)

gives the Nash-stable partition of the network in the Hedonic game
with the value function defined by (10), where γ = 1 and βij = β.



Modularity

For the network presented in Figure we calculate
P(N) = 3/2,P({B,C} ∪ {A,D} ∪ {E ,F}) =
P({A,B,C ,D} ∪ {E ,F}) = 7/2 and
P({A,B,C} ∪ {D,E ,F}) = 5. Thus, according to the value
function (10) with γ = 1 and βij = β (modularity value function),
Π = {{A,B,C}, {D,E ,F}} is the unique Nash-stable coalition.



Math-net.ru partitioning
For simplicity we delete all links with weight which is smaller than
seven. The result is presented in Figure. It follows that the nodes
40, 34, 56 and 20 are the centers of ‘local’ stars and, consequently,
must have a high centrality. Notice that node 32 also must have
high centrality because it is connecting two separate components.

A

B

F

G

C

D

E



Social networks Γ =< N,G,R >, where
N = {1, ..., n} - players,
G -graph of network,
R = {rij} -reputation matrix, rij > 0 - rate of reputation
i → j, i , j ∈ N.
R-stochastic matrix.
Let x(t) = (x1(t), ..., xn(t)) - vector of decisions. x(0) - initial
vector.
x(t) = Rx(t − 1), t = 1, 2, ... - conversations
or
xi(t) =

∑
j∈N

rijxj(t − 1), t = 1, 2, ...



Social networks

⇒ x(t) = R tx(0)
As t → ∞ then x(t) → x = (x1, ..., xn) - vector final decisions.
x = R∞x(0) where R∞ = limR(t).
R-stochastic matrix ⇒ R∞ = (r , r , ..., r)′.
Thus, x = (X ,X , ...,X) - final decisions of all players are equal.
r = (r1, ..., rn) - power indexes.

X =
∑
i∈N

rixi(0)

is consensus.



Information Fighting

Two Bosses I and II.
I controls coalition S1 ⊂ N, recommended decision d1,
II controls S2 ⊂ N, recommended decision d2,
S3 = N − S1 − S2-neutral players.
So, final decision is

X = ρ1d1 + ρ2d2 +
∑
j∈S3

rjxj(0),

where
ρ1 =

∑
j∈S1

rj , ρ2 =
∑
j∈S2

rj .

Information fighting game is < I, II,D,D,H1(d1, d2),H2(d1, d2) >,
where Hi(d1, d2) = Hi(X , di), i = 1, 2.



Information Fighting

Let H1 = X − 2X2 − c1d2
1 , H2 − X − 3X2 − c2d2

2
or

H1(d1, d2) = (d1ρ1 + d2ρ2)− 2(d1ρ1 + d2ρ2)
2 − c1d2

1

H2(d1, d2) = (d1ρ1 + d2ρ2)− 3(d1ρ1 + d2ρ2)
2 − c2d2

2 .

First order condition

∂H1
∂d1

= ρ1 − 4(d1ρ1 + d2ρ2)− 2c1d1 = 0.

∂H2
∂d2

= ρ2 − 6(d1ρ1 + d2ρ2)− 2c2d2 = 0.



Information Fighting

Nash equilibrium is

d∗
1 =

ρ1(c2 + ρ2
2)

2c1c2 + 6c1ρ2
2 + 4c2ρ2

1

d∗
2 =

ρ2(c1 − ρ2
1)

2c1c2 + 6c1ρ2
2 + 4c2ρ2

1
.
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