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Networking game

Game=<Players, Strategies, Payoffs>
Players: Programs, Packages, Mobile Phones, Nodes of Networks,
etc.
Strategies: balancing, routing, level of signals, number of links, etc.
Payoffs: cost, delay, working time, profit, reward, etc.

Formal definition:
Γ =< N = 1, 2, ..., n, {Xi}i∈N , {Hi(x1, ..., xn)}i∈N >
x = (x1, ..., xn) - profile of strategies.
Objective of player i ∈ N Hi(x1, ..., xn) → max

xi
or min

xi



Nash Equilibrium and Strong Nash Equilibrium

We use notation x = (xi , x−i) for x = (x1, ..., xi , ..., xn) and for
coalition S = {i1, ..., ik} (a subset of N) let x = (xS , x−S) for
x = (x1, ..., xi1 , ..., xik , ..., xn).
Definition 1. Profile x∗ = (x∗

1 , ..., x∗
n ) is Nash equilibrium if for

any i ∈ N

Hi(xi , x∗
−i) ≤ Hi(x∗), ∀xi .

Definition 2. Profile x∗ = (x∗
1 , ..., x∗

n ) is Strong Nash equilibrium if
for any coalition S ⊂ N and any profile xS it exists a player i ∈ S
for whom

Hi(xS , x∗
−S) ≤ Hi(x∗).



Cooperation and Competition

Denote H(x1, ..., xn) =
∑

i∈N Hi(x1, ..., xn). Profile xopt which
maximizes H(x1, ..., xn) we call the cooperative solution.
Definition 3. Nash equilibrium xWNE is worst case Nash
equilibrium if for any NE x

H(xWNE ) ≤ H(x).

Definition 4. Let xWNE is the worst case Nash equilibrium and
xopt cooperative solution. Then the ratio

PoA =
H(xWNE )

H(xopt)

we call Price of Anarchy (Papadimitriou [1999]).



Cooperation and Competition

By analogy for costs Ci(x1, ..., xn), i ∈ N denote Social Cost
C(x1, ..., xn) =

∑
i∈N Ci(x1, ..., xn). Profile xopt which minimizes

C(x1, ..., xn) we call the cooperative solution.
Definition 5. Nash equilibrium xWNE is worst case Nash
equilibrium if for any NE x

C(x) ≤ C(xWNE ).

Definition 6. Let xWNE is the worst case Nash equilibrium and
xopt cooperative solution. Then the ratio

PoA =
C(xWNE )

C(xopt)

we call Price of Anarchy.



Load Balancing

n = 4 processors, the jobs w = (7, 7, 6, 6, 5, 5, 4, 4, 4).

Optimal Load

Processor1 Proccessor2 Processor3 Processor4

7 7 6 4

5 5 6
4
4

Optimal makespan (OPT) 12.



Load Balancing. Nash Equilibrium

n = 4 processors, the jobs w = (7, 7, 6, 6, 5, 5, 4, 4, 4).
Nash Equilibrium

Processor1 Proccessor2 Processor3 Processor4

7 7 6 6
4 4 5 5
4

Maximal load (Social Cost) 15.
Price of Anarchy 15/12=1.25
Coalition (7, 4, 4, 5, 5) improves payoffs



Load Balancing. Strong Nash Equilibrium

n = 4 processors, the jobs w = (7, 7, 6, 6, 5, 5, 4, 4, 4).
Strong Nash Equilibrium

Processor1 Proccessor2 Processor3 Processor4

5 7 6 6
5 4 7 4
4

Maximal load (Social Cost) 14.
Strong Price of Anarchy 14/12=1.166



Routing problem

Network with m parallel links.

n users send the traffic of size wi in one of links i = 1, . . . , n. Each
link l = 1, . . . ,m has capacity cl . Assume that the delay for traffic
w in the link with c is equal to w/c.
A user tries to minimize the delay.
i → li : L = (l1, . . . , ln) is profile of strategies.
Mixed strategy is pi = (p1

i , . . . , pm
i ), where p l

i – probability that i
uses l .
Matrix P is profile of all strategies.



Routing problem

Pure strategies: The delay of player i in link li is

λi =

∑
k:lk=li wk

cli
.

Def. 1. Profile (l1, . . . , ln) is NE if for any user i
λi = min

j=1,...,m

wi+
∑

k 6=i:lk=j wk
cj

.

Mixed strategies: the expected delay of user i using link l is

λl
i =

wi+
n∑

k=1,k 6=i
pl

kwk

cl
.

Minimal expected delay is λi = min
l=1,...,m

λl
i .

Def. 2. Profile P is NE if for any user i and any link is satisfied
λl

i = λi for p l
i > 0, and λl

i > λi , for p l
i = 0.



Fully mixed equilibrium

Def. 3. P is fully mixed NE if each user chooses the link in NE
with p l

i > 0.

λl
i =

wi +
n∑

k=1,k 6=i
p l

kwk

cl
= λi , ∀i , l .



Social costs

Social costs SC(w , c, L) for pure strategies are:
Linear costs LSC(w , c, L) =

m∑
l=1

∑
k:lk=l wk

cl
;

Quadratic costs QSC(w , c, L) =
m∑

l=1

(∑
k:lk=l wk

)2

cl
;

Maximal costs MSC(w , c, L) = max
l=1,...,m

∑
k:lk=l wk

cl
.



Social costs and Price of Anarchy

Def. 4. For mixed profile P social costs are

SC(w , c,P) = E (SC(w , c, L)) =
∑

L=(l1,...,ln)

( n∏
k=1

p lk
k · SC(w , c, L)

)
.

Optimal social costs opt = minP SC(w ,P).

Def. 5. Price of anarchy is the ratio of the social costs in worst
case of NE to the optimal costs

PA = sup
P−NE

SC(w ,P)

opt .

PA ≥ 1.



Worst Case Nash Equilibrium
Let n = 5 players , m = 3 links, w = (20, 10, 10, 10, 5),
c = (20, 10, 8).

Fig. 2. Worst case of NE with delay 2.5

There are few NE. {(10, 10, 10) → 20, 5 → 10, 20 → 8)}.
For this profile SC are maximal

MSC(w ; c; (10, 10, 10) → 20, 5 → 10, 20 → 8) = 2.5.

This NE is worst case NE. The maximum of SC is achieved in
(20, 10) → 20, (10, 5) → 10, 10 → 8 and equal to 1.5.
PoA = 2.5

1.5 = 5/3.



Braess paradox

Delete the link 8, then in worst case the social costs are

MSC(w ; c; (20, 10, 10) → 20, (10, 5) → 10) = 2.

Fig. 3. The delay is decreasing if we delete a link

PoA = 2
1.5 = 4/3.



Examples
Example 2. n = 4, m = 3, w = (15, 5, 4, 3), c = (15, 10, 8). The
social costs in worst case NE are

MSC(w ; c; (5, 4) → 15, 15 → 10, 3 → 8) = 1.5.

Optimal load 15 → 15, (5, 3) → 10, 4 → 8, makespan is 1.
If we delete the link 10 then the worst case NE is
(15, 5) → 15, (4, 3) → 8 with SC =1.333. Global optimum and the
best NE are achieved for (15, 3) → 15, (5, 4) → 8, and SC= 1.2.
Example 3. n = 4, m = 3, w = (15, 8, 4, 3), c = (15, 8, 3). SC for
worst case NE are

MSC(w ; c; (8, 4, 3) → 15, 15 → 8) = 1.875.

Optimal load (15, 4) → 15, 8 → 8, 4 → 3, makespan is 1.2666.
If we delete link 8 the worst case NE is (15, 8, 4) → 15, 3 → 3 with
SC= 1.8. Global optimum and the best NE are
(15, 8, 3) → 15, 4 → 3, and SC= 1.733.



NE in pure strategies. Braess paradox
Example. Braess paradox. Consider the system of roads.
Suppose 60 cars move from A to B. The delay in the links (C ,B)
and (A,D) doesn’t depended of number of cars and equal to 1
hour, in the links (A,C) and (D,B) is proportional the number of
cars (in minutes). We find that NE is the equal distribution of cars
in the links (A,C ,B) and (A,D,B). That is 30 cars in each link.
So, the delay of each player is 1.5 hours.

Users are distributed uniformly in both links



NE in pure strategies. Braess paradox

Suppose that we connect C and D bu new road with delay 0. Then
for a car which drives in the link (A,D,B) is more profitable to
drive in (A,C ,D,B). The same for cars in (A,C ,B), more
profitable to drive in (A,C ,D,B). Thus, NE is (A,C ,D,B). But
the delay for each player now is 2 hours.



Price of anarchy. General network
The users N = (1, 2, ..., n) send traffic in network G = (V ,E), V
nodes and E edges. For each user i it is determined set Zi of
admissable paths from si to ti by G. We suppose that all users
send the unit traffic.

For each link e ∈ E it is determined capacity ce > 0. Each user
tries to minimize the delay sending traffic from s to t.



Strategies. Linear latency

The strategy Ri ∈ Zi , is a path. Then R = (R1, . . . ,Rn) is a profile
of strategies. For profile R we write
(R−i ,R ′

i ) = (R1, . . . ,Ri−1,R ′
i ,Ri+1, . . . ,Rn). It means that user i

changes the strategy from Ri to R ′
i , and other players use the same

strategies.
For each link let ne(R) is the number of players using link e in
profile R . The delay depends on the load of the used links. Let
consider the latency in linear form

fe(k) = aek + be ,

where ae and be non-negative constants. For simplicity let
fe(k) = k.



The costs

Each user minimizes the sum of latencies in all links. The personal
costs of user i is

ci(R) =
∑
e∈Ri

fe(ne(R)) =
∑
e∈Ri

ne(R).

NE is the profile where nobody is interested to change his
strategies.
Definition. Profile R is NE if for each user i ∈ N we have
ci(R) ≤ ci(R−i ,R ′

i ).



Linear social costs

Social costs here are linear

SC(R) =
n∑

i=1
ci(R) =

n∑
i=1

∑
e∈Ri

ne(R) =
∑
e∈E

n2
e(R).

Minimal SC are opt. Let find the ratio

PoA = sup
R−NE

SC(R)

opt .



Price of anarchy. General network
Theorem. Price of anarchy is equal to 5/2.
Proof. Let R∗ is NE and R is any profile (in particular, optimal).
For NE R∗ the personal cost of user i if he switches for the
strategy Ri will increased

ci(R∗) =
∑

e∈R∗
i

ne(R∗) ≤
∑
e∈Ri

ne(R∗
−i ,Ri).

If player i switches then the load of each link can increased at
most for 1, hence,

ci(R∗) ≤
∑
e∈Ri

(ne(R∗) + 1).

Summarizing these inequalities in i we obtain

SC(R∗) =
n∑

i=1
ci(R∗) ≤

n∑
i=1

∑
e∈Ri

(ne(R∗)+1) =
∑
e∈E

ne(R)(ne(R∗)+1).



Price of anarchy. General network

Lemma. For any non-negative integer numbers α, β is takes place

β(α+ 1) ≤ 1
3α

2 +
5
3β

2.

From lemma

SC(R∗) ≤ 1
3
∑
e∈E

n2
e(R∗) +

5
3
∑
e∈E

n2
e(R) =

1
3SC(R∗) +

5
3SC(R),

hence
SC(R∗) ≤ 5

2SC(R)

for any profile R . It yields PoA ≤ 5/2.



Potential game

Γ =< N = 1, 2, ..., n, {Xi}i∈N , {Hi(x1, ..., xn)}i∈N >
x = (x1, ..., xn) - profile of strategies.
Objective of player i ∈ N Hi(x1, ..., xn) → max

xi
or min

xi
We use notation x = (xi , x−i) for x = (x1, ..., xi , ..., xn) .
Definition 1. Profile x∗ = (x∗

1 , ..., x∗
n ) is Nash equilibrium if for

any i ∈ N

Hi(xi , x∗
−i) ≤ Hi(x∗), ∀xi .



A normal-form n-player game Γ =< N, {Xi}i∈N , {Hi}i∈N >.

Suppose that there exists a certain function P :
n∏

i=1
Xi → R such

that for any i ∈ N we have the inequality

Hi(x−i , x ′
i )− Hi(x−i , xi) = P(x−i , x ′

i )− P(x−i , xi)

for arbitrary x−i ∈
∏
j 6=i

Xj and any strategies xi , x ′
i ∈ Xi . Then Γ is

potential game and P is a potential function.



Potential games

(2, 4, 6, 8)

BA
(1, 2, 3, 4)

Traffic jamming. Suppose that players
I and II, each possessing two packages,
have to deliver it from point A to point
B.

These points communicate through two links. Numbers on the
figure indicate the journey time on each link depending on the
number of moving packages.

Payoff matrix:


(2, 0) (1, 1) (0, 2)

(2, 0) (−8,−8) (−6,−5) (−4,−8)
(1, 1) (−5,−6) (−6,−6) (−7,−12)
(0, 2) (−8,−4) (−12,−7) (−16,−16)

.



Potential games

Payoff matrix:


(2, 0) (1, 1) (0, 2)

(2, 0) (−8,−8) (−6,−5) (−4,−8)
(1, 1) (−5,−6) (−6,−6) (−7,−12)
(0, 2) (−8,−4) (−12,−7) (−16,−16)

.

The game possesses the potential

P =


(2, 0) (1, 1) (0, 2)

(2, 0) 13 16 13
(1, 1) 16 16 10
(0, 2) 13 10 0





Potential games

Choice of data centers. Assume each
of two cloud operators may conclude a
contract to utilize the capacity
resources of one or two of three data
centers available. The resources of data
centers 1, 2, and 3 are 2, 4, and 6,
respectively. If both operators choose
the same data center, they equally share
its resources. The payoff of each player
is the sum of the obtained resources at
each segment minus the rent cost of the
resources provided by a data center (let
this cost be 1).



Potential games
Payoff matrix:



(1) (2) (3) (1, 2) (1, 3) (2, 3)
(1) (0, 0) (1, 3) (1, 5) (0, 3) (0, 5) (1, 8)
(2) (3, 1) (1, 1) (3, 5) (1, 2) (3, 6) (1, 6)
(3) (5, 1) (5, 3) (2, 2) (5, 4) (2, 3) (2, 5)
(1, 2) (3, 0) (2, 1) (4, 5) (1, 1) (3, 5) (2, 6)
(1, 3) (5, 0) (6, 3) (3, 2) (5, 3) (2, 2) (3, 5)
(2, 3) (8, 1) (6, 1) (5, 2) (6, 2) (5, 3) (3, 3)

.

Potential:

P =



(1) (2) (3) (1, 2) (1, 3) (2, 3)
(1) 1 4 6 4 6 9
(2) 4 4 8 5 9 9
(3) 6 8 7 9 8 10
(1, 2) 4 5 9 5 9 10
(1, 3) 6 9 8 9 8 11
(2, 3) 9 9 10 10 11 11

.



Potential games

Theorem. Let an n-player game Γ =< N, {Xi}i∈N , {Hi}i∈N >
have a potential P. Then a Nash equilibrium in the game Γ
represents a Nash equilibrium in the game Γ′ =< N, {Xi}i∈N ,P >,
and vice versa. Furthermore, the game Γ admits at least one pure
strategy equilibrium.

Proof. The first assertion follows from the definition of a potential.

Hi(x∗
−i , xi) ≤ Hi(x∗),∀xi , P(x∗

−i , xi) ≤ P(x∗), ∀xi



Potential games

Now, we argue that the game Γ′ always has a pure strategy
equilibrium. Let x∗ be the pure strategy profile maximizing the
potential P(x) on the set

n∏
i=1

Xi . For any x ∈
n∏

i=1
Xi , the inequality

P(x) ≤ P(x∗) holds true at this point, particularly,

P(x∗
−i , xi) ≤ P(x∗), ∀xi .

Therefore, x∗ represents a Nash equilibrium in the game Γ′ and,
hence, in the game Γ.



Potential games

(2, 4, 6, 8)

BA
(1, 2, 3, 4)

A game without potential. A game
may have no potential, even if a pure
strategy equilibrium does exist.

Suppose that the costs of players are defined by the maximal
journey time of their packages on both links.

Payoff matrix:


(2, 0) (1, 1) (0, 2)

(2, 0) (−4,−4) (−3,−3) (−2,−4)
(1, 1) (−3,−3) (−4,−4) (−6,−6)
(0, 2) (−4,−2) (−6,−6) (−8,−8)

.



Potential games

(2, 4, 6, 8)

BA
(1, 2, 3, 4)

The described game has no potential.
We demonstrate this fact rigorously.
Assume that a potential P exists; then:

P(1, 1)− P(3, 1) = H1(1, 1)− H1(3, 1) = −4 − (−4) = 0,

P(1, 1)− P(1, 2) = H2(1, 1)− H2(1, 2) = −4 − (−3) = −1.
And so,

P(3, 1)− P(1, 2) = −1.
On the other hand,

P(1, 2)− P(3, 2) = H1(1, 2)− H1(3, 2) = −3 − (−6) = 3,

P(3, 1)− P(3, 2) = H2(3, 1)− H2(3, 2) = −2 − (−6) = 4,
whence it follows that P(3, 1)− P(1, 2) = 1. This two facts
contradicts, the game possesses no potential.



Gongestion games

Definition. A symmetrical congestion game is an n-player game
Γ =< N,M, {Si}i∈N , {ci}i∈N >, where N = {1, ..., n} stands for
the set of players, and M = {1, ...,m} means the set of some
objects for strategy formation. A strategy of player i is the choice
of a certain subset from M. The set of all feasible strategies makes
the strategy set of player i, denoted by Si , i = 1, ..., n. Each object
j ∈ M is associated with a function cj(k), 1 ≤ k ≤ n, which
represents the payoff (or costs) of each player from k players that
have selected strategies containing j. This function depends only
on the total number k of such players.



Gongestion games

Players have chosen strategies s = (s1, ..., sn). The payoff function
of player i is determined by the total payoff on each object:

Hi(s1, ..., sn) =
∑
j∈si

cj(kj(s1, ..., sn)).

Here kj(s1, ..., sn) gives the number of players whose strategies
incorporate object j, i = 1, ..., n.

Theorem. A symmetrical congestion game is potential, ergo
admits a pure strategy equilibrium.

P(s1, ..., sn) =
∑

j∈∪i∈Nsi

kj(s1,...,sn)∑
k=1

cj(k)





Gongestion game. Example
Players 1,2,3,4 send unit traffic via network from 1 to 4
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Gongestion game. Example

Strategies: s1 = {(1, 2)(2, 4)}, s2 = {(1, 3)(3, 4)},
s3 = {(1, 2)(2, 3), (3, 4)}, s4 = {(1, 3)(3, 2), (2, 4)}.
Calculate potential:

P(s1, s2, s3, s4) =
1+2

3 + 1+2
1 + 1+2

2 + 1+2
2 + 1+2

3 = 8
P(s1, s1, s2, s2) =

1+2
3 + 1+2

1 + 1+2
2 + 1+2

2 + 1+2
3 = 6.5

P(s1, s2, s2, s3) =
1+2

3 + 1
1 + 1+2

2 + 1
2 + 1+2+3

3 = 6.

Thus, profile (s1, s2, s2, s3) is Nash equilibrium.



Virtual operator market as a congestion game

There are m mobile network operators (MNO)
M = {M1,M2, ...,Mm}. Mj is characterized by the parameters
(pj ,mj , rj , cj), j = 1, ...,m, where pj - price for resource, mj is
number of consumers, rj is the amount of a resource and cj is a fee
to join to this market.

There are n mobile network virtual operators (MNVO)
{V1,V2, ...,Vn} who compete in the market for the resources. We
suppose that n is much larger than m. Each MNVO Vi has some
private resource vi , i = 1, ..., n. MNVO are the players in the game.



MNO and MNVO market

Our main achievements in this paper are:
1 Formulation of two-level competitive market for MNOs and

MVNOs.
2 Finding market organization for identical players.
3 Analysing of pricing game in general
4 Finding equilibrium for allocation games in two-player case



Two-Stage Competition Model

Competition consists of two stages.
On the first stage the players (MNVO) choose some MNO to
compete for the consumers. So, the strategy of player Vi is a
subset si ⊂ Si from the feasible set Si ⊆ M.

After the profile s = (s1, ..., sn) is formed the players announce the
prices for their service in each market j: qj

i , i = 1, ..., n; j ∈ si .



Two-Stage Competition Model

The profile of the prices we denote q = (q1, ..., qn). To avoid the
monopoly we suppose that if the market Mj is occupied only one
player Vi there is a restriction for the price qi ≤ Qj . So, the payoff
of the player Vi on the non-competitive market Mj ∈ si is equal to

uj
i (q) = (Qj − pj)mj − cj .

The payoff of player Vi on the competitive market Mj ∈ si is equal
to

uj
i (q) = (qj

i − pj)mjγ
j
i − cj ,

where γj
i is a proportion of consumers mj who are interested in the

service Vi .



Logistic law
Here we use the logistic function

γj
i =

exp{−αijqi + βijvi}∑
l:j∈sl

exp{−αljql + βljvl}}
=

kij exp{−αijqi}∑
l:j∈sl

klj exp{−αljql}}
, j ∈ si ,

where
kij = exp{βijvi}, i = 1, ..., n, j ∈ si .

The general payoff of player Vi is the sum of payoffs in all used
markets:

ui(q) =
∑
j∈si

uj
i (q) =

∑
j∈s′i

(
(qj

i − pj)mjγ
j
i − cj

)
+
∑
j∈s′′i

((Qj − pj)mj − cj) ,

i = 1, ..., n,
where s ′i and s ′′i are competitive and non-competitive markets,
respectively.
The objective of the paper is to find equilibrium in the pricing
model and then is to find the equilibrium in the allocation problem.



Model with Identical Players

Consider a case where all MNVO are identical, so all parameters
vi , αij , βij don’t depend on the player i , and all markets are
competitive. For simplicity assume that kij = 1. Consider the
pricing game on the first market. Let n1 ≥ 2 players compete in
this market. They announce the prices q = (q1, ..., qn1). The payoff
of player Vi is

u1
i (q) = (qi − p1)m1

exp{−α1qi}
n1∑

l=1
exp{−α1ql}}

− c1, i = 1, ..., n1.



Model with Identical Players

The first order condition for the equilibrium ∂ui(q)/∂qi = 0 gives

n1∑
l=1

exp{−α1ql} = (qi − p1)
∑
l 6=i

exp{−α1ql}α1.

By symmetry all prices in the equilibrium must be equal, for
example q1. It yields

q1 = p1 +
1
α1

n1
n1 − 1 .



Model with Identical Players

Hence, the optimal payoff of player Vi on the first market is

u1
i =

m1
α1

1
n1 − 1 − c1, i = 1, ..., n1. (2)

We see that the payoff of any player is a decreasing function of
number of players acted in this market. So, allocation game
presented here is a congestion game [Rosental] which has a
potential.
If the player Vi uses the allocation strategy si then his general
payoff is

ui =
∑
j∈si

(
mj
αj

1
nj(s)− 1 − cj

)
, i = 1, ..., n, (3)

where nj(s) is the number of players chooses the market Mj
(congestion vector).



Congestion game

To find equilibrium in the congestion game we can maximizing the
potential function which has the following form

P(s1, ..., sn) =
m∑

j=1

nj(s)∑
i=1

(
mj/αj
i − 1 − cj

)
.

Consequently, the optimal allocation of the players among
{M1, ...,Mm} can be found as a solution of the optimization
problem

m∑
j=1

(
mj
αj

nj∑
i=1

1
i − 1 − cjnj

)
→ max

in condition
m∑

j=1
nj =

n∑
i=1

|si |.



Congestion game

For example if the players can choose only one market then
n∑

i=1
|si | = n. For large n and small fee (cj ≈ 0) the optimization

problem becomes
m∑

j=1

mj
αj

log nj → max

the solution of which is

nj ≈
mj
αj

m∑
l=1

ml
αl

n, j = 1, ...,m,

so, for large n the players are allocated proportionally to the ratio
of numbers of consumers and the weight of the player in the
market. Notice that we don’t know the precise location of the
player but we know how many players will locate in each market.



Pricing Game
Consider the general case. Assume that the players are distributed
among Mj in correspondence with the allocation rule
s = (s1, ..., sn). Consider a market Mj . In this market we have
nj = nj(s) players. For convenience let us re-enumerate players
inside the market from 1 to nj . Pricing game in the market Mj is a
non-cooperative game on nj players with payoff functions

uj
i (q) = (qj

i − pj)mj
kij exp{−αijqi}∑

l:j∈sl

klj exp{−αljql}}
− cj , i = 1, ..., nj . (4)

The game with these payoffs is a potential game and the NE
q∗ = (q∗

1, ..., q∗
nj ) can be found as a maximum of potential

Pj(q) =
nj∏

i=1
(qj

i − pj)

exp{−
nj∑

l=1
αljql}

nj∑
l=1

klj exp{−αljql}
. (5)



Pricing Game

The equilibrium q∗ can be found from the first order condition
∂Pj(q)/∂qi = 0, i = 1, ..., nj . It yields

nj∑
l=1

klj exp{−αljq∗
l } = αij(q∗

i −pj))

nj∑
l=1(l 6=i)

klj exp{−αljq∗
l }, i = 1, ..., nj .

Suppose that a new player nj + 1 join to the market Mj . New
equilibrium prices q′ = (q′

1, ..., q′
nj , q

′
nj+1) satisfy the system of

equations

nj+1∑
l=1

klj exp{−αljq′
l} = αij(q′

i−pj)

nj+1∑
l=1(l 6=i)

klj exp{−αljq′
l}, i = 1, ..., nj+1.

Theorem. If a new player join to the market the payoffs of the
players who compete in the market before it become less.



Allocation Game

.: Example of a game for 8 strong and 14 weak MVNOs

The optimal payoffs of the players in the equilibrium in market Mj
depend not only on the number of players nj , but also depend on
the characteristic of the players (parameters αij , kij).



Stable allocation

Suppose that at the market there are two types of MVNOs. For
example, there are ”strong”and ”weak”mobile virtual operators.
Formally, it corresponds to the parameters αij = α1, or αij = α2,
for all j = 1, ...,m, and α1 ≤ α2.
Suppose that there are only two markets M1 and M2 and
n = n1 + n2 mobile virtual operators where n1, n2 is the number of
”strong”and ”weak”MVNO. First of all, the players select a
market. Then they play in ”pricing game”.



Stable allocation

Assume that the players are distributed in the following manner.
On the market M1 the distribution of ”strong”and ”weak”players is
(k1, k2), and on the market M2 the distribution is (l1, l2),
k1 + l1 = n1 and k2 + l2 = n2. Let us find the equilibrium prices in
each market. For simplicity assume that all parameters kij = 1,∀i , j.



Stable allocation

Consider the market M1. the price of MNO here is p1. The profile
of prices of MVNO is divided for two parts
q = (q1

1, ..., q1
k1
; q2

1, ..., q2
k2
), corresponding to ”strong”and ”weak

players and the payoffs are

u1
i (q) = (q1

i −p1)m1
exp{−α1q1

i }
k1∑

l=1
exp{−α1q1

l }+
k2∑

l=1
exp{−α2q2

l }
−c1, i = 1, ..., k1,

for ”strong”players and

u2
i (q) = (q2

i −p1)m1
exp{−α2q2

i }
k1∑

l=1
exp{−α1q1

l }+
k2∑

l=1
exp{−α2q2

l }
−c2, i = 1, ..., k2,

for ”weak”players.



The first order condition for the equilibrium
∂uj

i (q)/∂qi = 0,∀i , j = 1, 2, and symmetry of players inside the
groups yields that the equilibrium prices for ”strong”and ”weak
players”are equal to q∗

1, q∗
2, respectively and satisfy the system of

equation

(q1 − p1)α
1 ((k1 − 1) exp(−α1q1) + k2 exp(−α2q2)

)
=

k1 exp(−α1q1) + k2 exp(−α2q2) =

= (q2 − p1)α
2 (k1 exp(−α1q1) + (k2 − 1) exp(−α2q2)

)
=

Hence, the optimal payoff of ”strong”player on the first market is

u1(k1, k2,m1) = (q∗
1−p1)

m1
α1 ·

exp{−α1q∗
1}

(k1 − 1) exp{−α1q∗
1}+ k2 exp{−α2q∗

2}
−c1, i = 1, ..., k1,

and

u2(k1, k2,m1) = (q∗
2−p1)

m1
α2 ·

exp{−α2q∗
2}

k1 exp{−α1q∗
1}+ (k2 − 1) exp{−α2q∗

2}
−c2, i = 1, ..., k2,

for ”weak”players.



Stable allocation

The same arguments are true for the equlibrium prices at the
market M2. Now we can determine when the allocation of n
MVNOs among two markets M1 and M2 will be stable. Allocation
[(k1, k2); (l1, l2)] is Nash-stable if for each player it is
not-profitable to deviate from the current market. Formally, it
means that the following inequalities must be satisfied

u1(k1, k2,m1) ≥ u1(l1+1, l2,m2), u2(k1, k2,m1) ≥ u2(l1, l2+1,m2),

u1(k1+1, k2,m1) ≤ u1(l1, l2,m2), u2(k1, k2+1,m1) ≤ u2(l1, l2,m2).



Allocation Game
Consider the mobile network market with two MNOs, see Figure 2.
The first market is large m1 = 1000, the second is twice smaller
m2 = 500. There are twenty two MVNOs competing for the
consumers at these markets. Suppose that among these MVNOs
there are n1 = 8 ”strong”palyers and n2 = 14 ”weak”players, and
α1 = 1, α2 = 2.

.: Example of a game for 8 strong and 14 weak MVNOs



Numerical example

Let the prices for the resource in both markets be equal
p1 = p2 = 1, and the costs are c1 = 5, c2 = 2. Let us show that
the allocation
(k1 = 5, k2 = 10), (l1 = 3, l2 = 4) is Nash-stable.
We find the equilibrium prices in both markets. On the market M1

q∗
1 = 2.125, q∗

2 = 1.523.

The payoffs of the both types players in the equlibrium on the
market M1 are

u1(5, 10, 1000) = 120.299, u2(5, 10, 1000) = 21.191.

On the market M2 we find

q∗
1 = 2.267, q∗

2 = 1.550.



Numerical example

The payoffs of the both types players in the equlibrium on the
market M2 are

u1(3, 4, 500) = 128.755, u2(3, 4, 500) = 23.242.

We see that the market M2 is more profitable for both types of
players.
Prove the conditions for stability. Suppose, that a ”strong”player
from the market M1 decides to move to the market M2. We find
that its payoff here is u1(4, 4, 500) = 102.598. It is less than its
payoff on the market M1. So, it is not reasonable to move to
another market. Now assume that the ”weak player”moves from
market M1 to the market M2. Its payoff here is
u2(3, 5, 500) = 20.700. It is less than on the market M1. So, we see
that the allocation (k1 = 5, k2 = 10), (l1 = 3, l2 = 4) is
Nash-stable.
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