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Challenges and promises for translating computational
tools into clinical practice
Woo-Young Ahn1 and Jerome R Busemeyer2

Computational modeling and associated methods have greatly

advanced our understanding of cognition and neurobiology

underlying complex behaviors and psychiatric conditions. Yet,

no computational methods have been successfully translated

into clinical settings. This review discusses three major

methodological and practical challenges (A. precise

characterization of latent neurocognitive processes, B.

developing optimal assays, C. developing large-scale

longitudinal studies and generating predictions from multi-

modal data) and potential promises and tools that have been

developed in various fields including mathematical psychology,

computational neuroscience, computer science, and statistics.

We conclude by highlighting a strong need to communicate

and collaborate across multiple disciplines.
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Introduction
Computational modeling has greatly contributed to un-
derstanding cognitive processes underlying our decision-
making. By providing a mechanistic account of the pro-
cesses, computational modeling allows us to generate
quantitative predictions and test them in a precise man-
ner. Computational modeling also provides a framework
for studying the neural mechanisms of complex beha-
viors. Ever since reinforcement learning models were
shown to well describe phasic activity changes in mid-
brain dopamine neurons [1], computational modeling has
been widely combined with electrophysiological data and
human functional magnetic resonance imaging (fMRI)
signals to identify brain regions implementing specific
cognitive processes [2,3]. A systematic line of research
based on the computational framework suggests that the

brain has multiple systems for decision-making [4,5]: the
Pavlovian system, which sets a strong prior on our actions
when we are faced with rewards or punishments and the
instrumental system, which is further divided into habit-
ual (i.e., model-free; efficient but inflexible) and goal-
directed (model-based; effortful but flexible) systems.
While the Pavlovian system has been traditionally
regarded as purely model-free, new ample evidence
suggests Pavlovian learning might also involve model-
based evaluation [6].

There is a growing consensus that computational model-
ing can also be helpful to understand psychiatric disor-
ders. Computational models can break maladaptive
behaviors into distinct cognitive components, and the
model parameters associated with the components can
be used to understand the latent cognitive sources of their
deficits. Therefore, computational modeling can provide
a useful framework in understanding comorbidity among
psychiatric disorders in a systematic way. Such a
framework can specify psychiatric conditions with basic
dimensions of neurocognitive functioning and offer a
novel approach to assess and diagnose psychiatric patients
[7–9,10!].

Despite the growing enthusiasm, no computational assays
or methods have influenced clinical practice yet. There
remain several major methodological and practical chal-
lenges that need to be solved for translating computa-
tional modeling tools into clinical practice. In this article,
among many others, we focus on the following challenges
as summarized in Figure 1: (A) precise characterization of
latent neurocognitive processes, (B) development of op-
timal assays for assessing psychiatric conditions, (C) de-
velopment of large-scale longitudinal studies and
generating predictions using multi-modal and multi-di-
mensional data. In the following sections, we provide a
general overview of each challenge and discuss how we
can potentially address them. Our review focuses on
computational modeling of human decision-making and
fMRI studies, which are most relevant to the challenges
we consider. We also briefly review how mathematical
psychologists and computational neuroscientists have
independently attempted to understand psychiatric dis-
orders using computational methods. We hope this article
will help researchers in each field identify strengths of the
other field and stimulate further communication and
interaction between the fields. There are some important
topics that are not addressed in this article including
biophysically based models and readers can refer to
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research into practice? 
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– Behavioral symptoms 
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   Diagnostic tools    
 

Mapstone et al (2014) Nature Medicine

©
20

14
 N

at
ur

e 
A

m
er

ic
a,

 In
c.

  A
ll 

ri
gh

ts
 r

es
er

ve
d.

L E T T E R S

NATURE MEDICINE ADVANCE ONLINE PUBLICATION 3

C40:2, PC aa C40:6, PC acyl-alkyl (ae) C40:6), 
lysophophatidylcholine (lysoPC a C18:2), and 
acylcarnitines (ACs) (Propionyl AC (C3) and 
C16:1-OH) that were depleted in the plasma 
of the Converterpre participants but not in that 
of the NC group (Fig. 1b). These metabolites 
remained depleted after phenoconversion to 
aMCI/AD (Converterspost) and were similar 
to the levels in the aMCI/AD group.

We then performed targeted quantitative 
metabolomic and lipidomic analyses using 
plasma from a separate group of 40 participants 
as an independent blinded cross-validation, as 
one sample from the aMCI/AD group was not available for lipidomic 
analysis. The validation samples were obtained from those clinically 
defined NC, Converterpre, aMCI/AD subjects. The samples were proc-
essed and analyzed using the same SID-MRM-MS technique as in the 
discovery phase. The targeted quantitative analysis of the validation set 
revealed similar levels for the ten-metabolite panel (Supplementary 
Fig. 4) as were observed in the discovery samples (Fig. 1b).

We used the metabolomic data from the untargeted LASSO analysis 
to build separate linear classifier models that would distinguish the 
aMCI/AD and Converterpre groups from the NC group. We used receiver 
operating characteristic (ROC) analysis to assess the performance of 
the classifier models for group classification. For the Converterpre 
and NC group classification, the initial LASSO-identified metabolites 
yielded a robust area under the curve (AUC) of 0.96 (Fig. 2a) and a 
more modest AUC of 0.83 for aMCI/AD and NC group classification.  
A separate classifier model using the discovered ten-metabolite 
panel from the targeted metabolomic analysis classified Converterpre 
and NC participants with an AUC of 0.96 (Fig. 2b) and an AUC of 
0.827 for the aMCI/AD versus NC classification. To validate our 
 biomarker-based group classification, we applied the same simple 
logistic classifier model developed for the discovery samples to the 
independent validation samples. The model classified Converterpre 
and NC participants with an AUC of 0.92 (Fig. 2c) and an AUC of 0.77 
for the aMCI/AD versus NC groups. This model yielded a sensitivity 
of 90% and specificity of 90%, for classifying the Converterpre and NC 
groups in the validation phase (Fig. 2c).

We then considered the effects of apolipoprotein E (APOE) geno-
type on our classification of the Converterpre and NC groups. APOE 
is involved in lipid metabolism, with the 4 allele known to be a risk 
factor for AD. The proportion of 4 allele carriers was similar in  
the aMCI/AD (19/69 = 27.5%), NC (17/73 = 23%) and Converter 
(5/28 = 17%) groups ( 2 = 0.19, P = 0.68, not significant). We repeated 
the classification analyses using the ten-metabolite model with APO 

4 allele as a covariate. The effect of the 4 allele was not significant  
(P = 0.817), and classification accuracy for Converterpre and NC 
groups changed minimally from an AUC 0.96 to 0.968 (P = 0.992, not 
significant). Furthermore, a classifier model using only APOE 4 pro-
duced an AUC of 0.54 for classifying the Converterpre and NC groups, 
implying virtually random classification. These findings indicate 
that the presumed pathophysiology reflected by the ten-metabolite  
biomarker panel is orthogonal to APOE-mediated effects.

Here we present the discovery and validation of plasma metabo-
lite changes that distinguish cognitively normal participants who will 
progress to have either aMCI or AD within 2–3 years from those 
destined to remain cognitively normal in the near future. The defined 
ten-metabolite profile features PCs and ACs, phospholipids that have 
essential structural and functional roles in the integrity and function-
ality of cell membranes10,11. Deficits of the plasmalemma in AD have 
been described previously12. Studies have shown decreased plasma 
PC levels13 and lysoPC/PC ratios14 and increased cerebrospinal fluid 
(CSF) PC metabolites in patients with AD15, as well as decreased 
phosphatidylinositol in the hippocampus16 and other heteromodal 
cortical regions17. Furthermore, amyloid-  may directly disrupt 
bilayer integrity by interacting with phospholipids18. ACs are known 
to have a major role in central carbon and lipid metabolism occur-
ring within the mitochondria11. They have also been associated with 
regulation, production and maintenance of neurons through enhance-
ment of nerve growth factor production11, which is a known potent 
survival and trophic factor for brain cholinergic neurons, particularly  
those consistently affected by AD within the basal forebrain19–21. 
Decreasing plasma AC levels in the Converterpre participants in our 
study may indirectly signal an impending dementia cascade that  
features loss of these cholinergic neuronal populations. We posit  
that this ten–phospholipid biomarker panel, consisting of PC and 
AC species, reveals the breakdown of neural cell membranes in those 
individuals destined to phenoconvert from cognitive intactness to 

Table 2 Difference detection of putative metabolites using SID-MRM-MS
Metabolite Fold change Comparison groups Mode P value

PC ae C38:4 NC versus Converterpre POS 0.00417
Proline NC versus Converterpre POS 0.00003
Lysine NC versus Converterpre POS 0.0020
Serotonin NC versus Converterpre POS 0.0160
Taurine NC versus Converterpre POS 0.0030
DOPA NC versus Converterpre POS 0.0001
Phenylalanine NC versus Converterpre POS 0.00001
Acylcarnitine C7-DC NC versus aMCI/AD POS 0.0001

The arrows indicate upregulation or downregulation in the comparison group as compared to the NC participants. 
DOPA, dihydroxyphenylalanine; C7-DC, pimelyl-L-carnitine.
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Figure 2 ROC results for the lipidomics 
analyses. (a–c) Plots of ROC results from  
the models derived from the three phases  
of the lipidomics analysis. Simple logistic 
models using only the metabolites identified  
in each phase of the lipidomics analysis  
were developed and applied to determine  
the success of the models for classifying the 
Cpre and NC groups. The red line in each  
plot represents the AUC obtained from the 
discovery-phase LASSO analysis (a), the 
targeted analysis of the ten metabolites in  
the discovery phase (b) and the application  
of the ten-metabolite panel developed from the targeted discovery phase in the independent validation phase (c). The ROC plots represent sensitivity 
(i.e., true positive rate) versus 1 – specificity (i.e., false positive rate).
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C.  Developing large-scale longitudinal studies &  
     generating predictions from multi-modal data 
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Clinical insights w/ external validity 
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Integration of behavioral and neural data  

Machine learning 
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How to study latent 
(hidden) processes? 
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Unbalanced neuronal circuits in addiction Volkow et al. 641
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Current Opinion in Neurobiology

Frontostriatal circuitry of stimulus-response habits. (a) Schematic anatomical representation of the mesocorticolimbic dopamine system in the human
brain, highlighting several key processing stations: ventral tegmental area (VTA) and substantia nigra (SN), nucleus accumbens (NAc) in the ventral
striatum, thalamus and subthalamic nuclei, and prefrontal cortex, among others. Modified with permission [15]. (b) Four of the frontostriatal cortical
circuits that appear to play major roles in executive functioning and inhibitory control. DL: dorsolateral; DM: dorsomedial; VA: ventroanterior; VM:
ventromedial; r: right; IFG: inferior frontal gyrus; preSMA: pre somatic motor area; STN: subthalamic nucleus. Modified with permission [28].
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Schematic depiction of dopaminergic control of positive and negative motivation loops in the dorsal striatum. (a) When an action results in a better-
than-predicted situation, DA neurons fire a burst of spikes, which is likely to activate D1Rs on direct pathway neurons and facilitate immediate action
and corticostriatal plasticity changes that make it more likely to select that action in the future. (b) In contrast, when the result of an action is worse than
expected, DA neurons are inhibited reducing DA, which is likely to inhibit D2Rs indirect pathway neurons, suppressing immediate action and the
reinforcement of corticostriatal synapses, leading to suppression of that action in the future.Reprinted with permission [101].
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Is there a single framework for 
understanding the mind? 
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Computational psychiatry
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Computational ideas pervade many areas of science and
have an integrative explanatory role in neuroscience and
cognitive science. However, computational depictions of
cognitive function have had surprisingly little impact on
the way we assess mental illness because diseases of the
mind have not been systematically conceptualized in
computational terms. Here, we outline goals and na-
scent efforts in the new field of computational psychia-
try, which seeks to characterize mental dysfunction in
terms of aberrant computations over multiple scales. We
highlight early efforts in this area that employ reinforce-
ment learning and game theoretic frameworks to eluci-
date decision-making in health and disease. Looking
forwards, we emphasize a need for theory development
and large-scale computational phenotyping in human
subjects.

The explanatory gap
The idea of biological psychiatry seems simple and com-
pelling: the brain is the organ that generates, sustains and
supports mental function, and modern psychiatry seeks
the biological basis of mental illnesses. This approach has
been a primary driver behind the development of genera-
tions of anti-psychotic, anti-depressant, and anti-anxiety
drugs that enjoy widespread clinical use. Despite this
progress, biological psychiatry and neuroscience face an
enormous explanatory gap. This gap represents a lack of
appropriate intermediate levels of description that bind
ideas articulated at the molecular level to those expressed
at the level of descriptive clinical entities, such as schizo-
phrenia, depression and anxiety. In general, we lack a
sufficient understanding of human cognition (and cognitive
phenotypes) to provide a bridge between themolecular and
the phenomenological. This is reflected in questions and
concerns regarding the classification of psychiatric dis-
eases themselves, notably, each time the Diagnostic and
StatisticalManual ofMental Disorders (DSM) of the Amer-
ican Psychiatric Association is revised [1].

While multiple causes are likely to account for the
current state of affairs, one contributor to this gap is the
(almost) unreasonable effectiveness of psychotropic medi-
cation. These medications are of great benefit to a substan-
tial number of patients; however, our understanding of
why they work on mental function remains rudimentary.
For example, receptors are understood as molecular motifs
(encoded by genes) that shuttle information from one
cellular site to another. Receptor ligands, whose blockade

or activation relieves psychiatric symptoms, furnished a
kind of conceptual leap that seemed to obviate the need to
account for the numerous layers of representation inter-
vening between receptor function and behavioral change.
This, in turn, spawned explanations of mental phenomena
in simplistic terms that invoked a direct mapping from
receptor activation to complex changes in mental status.
We are all participants in this state of affairs, since symp-
tom relief in severe mental disease is sufficient from a
clinical perspective, irrespective of whether there are mod-
els that connect underlying biological phenomena to the
damaged mental function. A medication that relieves or
removes symptoms in a large population of subjects is

Review

Glossary

Cognitive phenotype: a phenotype is a measureable trait of an organism.
Although easy to state in this manner, the idea of a phenotype can become
subtle and contentious. Phenotypes include different morphology, biochemical
cascades, neural connection patterns, behavioral patterns and so on.
Phenotypic variation is a term used to refer to those variations in some trait
on which natural selection could act. A cognitive phenotype is a pattern of
cognitive functioning in some domain that could be used to classify styles of
cognition. By analogy, variations in cognitive phenotypes would be subject to
natural selection.
Computational phenotyping: a computational phenotype is a measurable
behavioral or neural type defined in terms of some computational model. By
analogy with other phenotypes, a computational phenotype should show
variation across individuals and natural selection could act on this variation.
Large-scale computational phenotyping in humans has not been carried out;
therefore, the ultimate utility of this idea has not been rigorously tested.
Game theory: the study of mathematical models of interactions between
rational agents.
Instrumental controller: instrumental conditioning is the process by which
reward and punishment are used in a contingent fashion to increase or
decrease the likelihood that some behavior will occur again in the future. An
instrumental controller is one whose control over behavior can be conditioned
in exactly the same fashion. It is an operational term used in the reinforcement
learning approach to motivated behavior to refer to any controller whose
influence over behavior shows the dependence on rewards and punishments
typical of instrumental conditioning.
Neuromodulatory systems: systems of neurons that project to broad regions
of target neural tissue to modulate subsequent neural responses in those
regions. Neuromodulatory systems typically have cell bodies situated in the
brainstem and basal forebrain and deliver neurotransmitters, such as
serotonin, dopamine, acetylcholine and norepinephrine, to target regions.
They are called modulatory because their impact is typically much longer-
lasting than fast synaptic effects mediated by glutamate and they are much
more widely distributed.
Pavlovian controller: an operational name for a behavioral controller that is
Pavlovian in the normal psychological use of this term – that is, the controller
mediates involuntary responses to situations or stimuli. Pavlovian control can
be demonstrated behaviorally and modern work is focused on identifying the
neural substrates that contribute to this function.
Serotonin: a neuromodulator common to many neurons in the raphe nuclei.
Serotonin has a presumed role in clinical depression because of the efficacy of
medications that selectively block its reuptake into neurons after its release
from synaptic terminals (so-called SSRI’s – selective serotonin reuptake
inhibitors).

Corresponding author: Montague, P.R. (read@vt.edu).
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Value-based decision making is pervasive in nature. 
It occurs whenever an animal makes a choice from 
several alternatives on the basis of a subjective value 
that it places on them. Examples include basic animal 
behaviours, such as bee foraging, and complicated 
human decisions, such as trading in the stock market. 
Neuroeconomics is a relatively new discipline that stud-
ies the computations that the brain carries out in order 
to make value-based decisions, as well as the neural 
implementation of those computations. It seeks to build 
a biologically sound theory of how humans make deci-
sions that can be applied in both the natural and the 
social sciences.

The field brings together models, tools and tech-
niques from several disciplines. Economics provides 
a rich class of choice paradigms, formal models of the 
subjective variables that the brain needs to compute to 
make decisions, and some experimental protocols for 
how to measure these variables. Psychology provides a 
wealth of behavioural data that shows how animals learn 
and choose under different conditions, as well as theories 
about the nature of those processes. Neuroscience pro-
vides the knowledge of the brain and the tools to study 
the neural events that attend decision making. Finally, 
computer science provides computational models of 
machine learning and decision making. Ultimately, it 
is the computations that are central to uniting these 
disparate levels of description, as computational models 
identify the kinds of signals and signal dynamics that are 
required by different value-dependent learning and deci-
sion problems. However, a full understanding of choice 
will require a description at all these levels.

In this Review we propose a framework for think-
ing about decision making. It has three components: 
first, it divides decision-making computations into five 
types; second, it shows that there are multiple types of 
valuation systems; and third, it incorporates modulat-
ing variables that affect the different valuation processes. 
This framework will allow us to bring together recent 
findings in the field, highlight some of the most impor-
tant outstanding problems, define a common lexicon 
that bridges the different disciplines that inform neuro-
economics, and point the way to future applications. The 
development of a common lexicon is important because 
a lot of confusion has been introduced into the literature 
on the neurobiology of decision making by the use of 
the unqualified terms ‘reward’ and ‘value’; as shown  
in the Review, these terms could apply to very different 
computations.

Computations involved in decision making
The first part of the framework divides the computations 
that are required for value-based decision making into 
five basic processes (FIG. 1). The categorization that we 
propose is based on existing theoretical models of deci-
sion making in economics, psychology and computer 
science1–3. Most models in these disciplines assume, 
sometimes implicitly, that all of these processes are 
carried out every time an animal makes a value-based 
decision.

The first process in decision making involves the 
computation of a representation of the decision prob-
lem. This entails identifying internal states (for example, 
hunger level), external states (for example, threat level) 
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Abstract | Neuroeconomics is the study of the neurobiological and computational basis of 
value-based decision making. Its goal is to provide a biologically based account of human 
behaviour that can be applied in both the natural and the social sciences. This Review 
proposes a framework to investigate different aspects of the neurobiology of decision 
making. The framework allows us to bring together recent findings in the field, highlight 
some of the most important outstanding problems, define a common lexicon that bridges  
the different disciplines that inform neuroeconomics, and point the way to future applications.
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Outcome evaluation
How desirable are the outcomes and 

states that followed the action?

Action selection
Choose actions based on valuations

Learning
Update the representation, valuation 

and action-selection processes

Representation
Set of feasible actions?

Internal states?
External states?

Valuation
What is the value of each action 

(given the internal and external states)?

and potential courses of action (for example, pursue 
prey). In the second process, the different actions that 
are under consideration need to be assigned a value 
(valuation). In order to make appropriate decisions, 
these values have to be reliable predictors of the benefits 
that are likely to result from each action. Third, the dif-
ferent values need to be compared for the animal to be 
able to make a choice (action selection). Fourth, after 
implementing the decision, the brain needs to measure 
the desirability of the outcomes. Finally, these feedback 
measures are used to update the other processes to 
improve the quality of future decisions (learning).

The five categories are not rigid, and many ques-
tions remain about how well they match the computa-
tions that are made by the brain. For example, it is not 
known whether valuation (step 2 in our model) must 
occur before action selection (step 3), or whether both 
computations are performed in parallel. Nevertheless, the 
taxonomy is conceptually useful because it breaks down 
the decision-making process into testable constituent 
processes, it organizes the neuroeconomics literature in 
terms of the computations that are being studied, and 
it makes predictions about the neurobiology of deci-
sion making, such as the hypothesis that the brain must 
encode distinct value signals at the decision and outcome 
stages, and the hypothesis that the brain computes a value 
signal for every course of action under consideration.

Representation
The representation process plays an essential part in 
decision making by identifying the potential courses of 
action that need to be evaluated, as well as the internal 

and external states that inform those valuations. For 
example, the valuation that a predator assigns to the 
action ‘chasing prey’ is likely to depend on its level of  
hunger (an internal state) as well as the conditions  
of the terrain (an external variable). Unfortunately, little 
is known about the computational and neurobiological 
basis of this step. Basic open questions include: how does 
the brain determine which actions to assign values to, 
and thus consider in the decision-making process, and 
which actions to ignore? Is there a limit to the number 
of actions that animals can consider at a time? How are 
internal and external states computed? How are the states 
passed to the valuation mechanisms described below?

Valuation at the time of choice
On the basis of a sizable body of animal and human 
behavioural evidence, several groups have proposed the 
existence of three different types of valuation systems: 
Pavlovian, habitual and goal-directed systems4–6 (BOX. 1). 
These systems are sometimes in agreement but often in 
conflict (see section on action selection). It is important 
to emphasize that the precise neural basis of these three 
distinct valuation systems is yet to fully be established. 
Although the evidence described below points to neural 
dissociations between some of the components of the 
three hypothetical systems, it is possible that they do not 
map directly onto completely separate neural systems6–9. 
In fact, it is likely that they share common elements. 
Moreover, even the exact nature and number of valuation 
systems is still being debated. Nevertheless, conceptually 
the three systems provide a useful operational division 
of the valuation problem according to the style of the 
computations that are performed by each.

Pavlovian systems. Pavlovian systems assign values to 
a small set of behaviours that are evolutionarily appro-
priate responses to particular environmental stimuli. 
Typical examples include preparatory behaviours (such 
as approaching cues that predict the delivery of food) and 
consummatory responses to a reward (such as pecking at 
a food magazine). Analogously, cues that predict a punish-
ment or the presence of an aversive stimulus can lead to 
avoidance behaviours. We refer to these types of behav-
iours as Pavlovian behaviours, and to the systems that 
assign value to them as the Pavlovian valuation systems.

Many Pavlovian behaviours are innate, or ‘hard-
wired’, responses to specific predetermined stimuli. 
However, with sufficient training animals can also 
learn to deploy them in response to other stimuli. For 
example, rats and pigeons learn to approach lights that 
predict the delivery of food. An important difference 
between Pavlovian systems and the other two systems 
is that Pavlovian systems assign value to only a small set 
of ‘prepared’ behaviours and thus have a limited behav-
ioural repertoire. Nonetheless, a wide range of human 
behaviours that have important economic consequences 
might be controlled by Pavlovian systems, such as 
overeating in the presence of food, behaviours displayed 
in people with obsessive–compulsive disorders (OCDs) 
and, perhaps, harvesting immediate smaller rewards at 
the expense of delayed larger rewards5,9.

Figure 1 | Basic computations involved in making a choice. Value-based decision 
making can be broken down into five basic processes: first, the construction of a 
representation of the decision problem, which entails identifying internal and external 
states as well as potential courses of action; second, the valuation of the different actions 
under consideration; third, the selection of one of the actions on the basis of their 
valuations; fourth, after implementing the decision the brain needs to measure the 
desirability of the outcomes that follow; and finally, the outcome evaluation is used to 
update the other processes to improve the quality of future decisions.
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did not achieve a comparable level of recovery with the 
GMM (see Figs. 3 and 4). We also performed model  
comparison using BIC (not shown) to find the best num-
ber of clusters when we successively tested different 
numbers of clusters. We found that adding more clusters 
monotonically decreased BIC thus favoring models with 
many clusters, despite the added complexity of these 
models. This might not be surprising given that there are 
many other individual differences beyond age and IQ 
that could affect group membership. It does represent a 
problem for this approach, however, given that it is not 
immediately clear what level of representation should be 
chosen if a purely unsupervised measure such as BIC 
does not provide guidance.

In conclusion, we demonstrated how computational 
modeling and latent variable models can be used to con-
struct CMPs of individuals tested on multiple cognitive 
decision-making tasks. Using supervised machine-learn-
ing methods, we were able to achieve up to 95% accu-
racy in classifying young versus old age. Finally, after we 
regressed IQ out as a nuisance variable, unsupervised 
clustering was able to group young and old individuals 
on the basis of the structure of the CMP space.

Simulation experiment

Although the preceding example demonstrated a clear 
benefit in using the DDM for unsupervised clustering, the 
model parameters were less beneficial compared with 
simple behavioral summary statistics (RT and accuracy) 
when we performed supervised classification. This find-
ing raises the question whether DDM parameters derived 
on the basis of behavioral measures alone can, in prin-
ciple, provide a benefit in supervised learning over sum-
mary statistics. We thus performed a simple experiment 
in which we simulated data from the DDM generating 
two groups with 40 subjects each. The mean parameters 
of the two groups differed in threshold, drift rate, and 
nondecision time (exact values can be found in the 
Parameters Used in Simulation Study section in the 
Supplemental Material). We then recovered DDM param-
eters by estimating the HDDM (without allowing group 
to influence fit, which would be an unfair bias). Summary 
statistics consisted of mean and standard deviation of RT 
and accuracy. Figure 6 shows the area under the curve 
using logistic regression with Level-2 regularization in a 
10-fold cross-validation. As the figure shows, for this 
parameter setting, the DDM-recovered parameters pro-
vide a large benefit over summary statistics. During the 
exploration of various generative parameter settings, 
however, we also found that other settings do not lead to 
an improvement, similar to the result obtained on the 
aging data set. Further research is necessary to establish 

conditions under which DDM provides a clear benefit 
over using the simpler summary statistics.

Predicting brain state on the  
basis of EEG

The previously discussed age example clearly demon-
strated the potential of this approach in a data-driven, 
hypothesis-free manner. To complement this example, we 
tested whether it was possible, using computational meth-
ods, to classify patients’ brain state using computational 
parameters related to measures of impulsivity. We reana-
lyzed a data set from our lab in which PD patients 
implanted with deep-brain stimulators in the STN were 
tested on a reward-based decision-making task (Cavanagh 
et al., 2011). STN deep-brain stimulation is very effective 
in treating the motor symptoms of the disease but can 
sometimes cause cognitive deficits and impulsivity 
(Bronstein et al., 2011; Hälbig et al., 2009). Prior work has 
shown that when faced with conflict between different 
reward values during decision making, HC subjects and 
patients off deep-brain stimulation adaptively slow down 
to make a more considered choice, whereas STN deep-
brain stimulation induces fast impulsive actions. In this 
study, we showed that the degree of RT slowing for high-
conflict trials was related to the degree to which frontal 
theta power increased. DDM model fits revealed that theta 
power increases were specifically related to an increase in 
decision threshold, thereby leading to more cautious but 
accurate responding, whereas deep-brain stimulation 
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Fig. 6. Area under the receiver operating characteristic curve that 
relates to classification accuracy of simulated response-time data from 
the drift-diffusion model (DDM). DDM represents parameters recov-
ered in a hierarchical DDM fit ignoring the group labels. Summary sta-
tistics are mean and standard deviation of response time and accuracy. 
Error bars represent standard deviations. Asterisks indicate accuracy 
significantly higher than chance (*p < .05, ***p < .001).
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the comparison of learning theories and the utility of the generalization method for comparing
models more generally.

2. Experiments and basic findings

In this study, 2 four-alternative simulated gambling tasks were used: the IGT and the SGT.
In both of the gambling tasks, participants were presented with four decks (or alternatives)
and were asked to choose a card from any of the four decks. Every selection yields a gain or
loss of some amount, and the goal of both tasks is to make as much money as possible. Fig. 1
shows a screenshot of the IGT as an example.

The IGT and the SGT differ in how payoffs are presented and in their payoff distributions
(see Tables 1 and 2). In the IGT, gains and losses are presented to participants separately (e.g.,
a participant learns that she or he won $1.00 but lost $2.00), whereas in the SGT only the
net gains are presented to participants (e.g., a participant is told that she or he lost $1.00).
Tables 1 and 2 illustrate the payoff distributions of the IGT and the SGT, respectively. In
both tasks, Decks A and B are disadvantageous (or bad) with regard to their long-term gain
(expected value of 10 trials = −$2.5), and Decks C and D are advantageous (or good) with
positive long-term gain (expected value of 10 trials = $2.5). The location of these four decks
are randomized for each participant, and decks are unlabeled when presented to participants.
Choosing the advantageous decks maximizes expected value.

From a statistical perspective, the IGT and the SGT are so-called four-armed bandit prob-
lems (Berry & Fristedt, 1985). Bandit problems are a special case of the more general re-
inforcement learning problems in which an agent has to learn an environment by choosing
actions and experiencing the consequences of those actions (e.g., Estes, 1950; Sutton &
Barto, 1998). Optimal performance on such problems depends on a delicate trade-off between

Fig. 1. A sample display of the Iowa Gambling Task.

Iowa Gambling Task
Bechara et al (1999) Cognition

Balloon Analogue Risk Task

Lejuez et al (2002) JEP: Applied

Cambridge Gambling Task

Rogers et al (1999) Neuropsychpharm.
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outcome delivery. This decreased power for detecting changes in BOLD
responses uniquely associated with action anticipation, but ensured
that the learning processwas not confounded by any attempt to decorr-
elate these two factors. The anticipatory response of an action before ac-
tual execution of any motor component involves action invigoration
and is likely to be associatedwith thedeployment of cognitive resources
(attention and sensory process) that allow a directing effect on the spe-
cific action being prepared. This dual association of motoric and cogni-
tive components that interact to sculpt a motor response is a general
mechanism that allows adaptive interactions with the environment.
Assessing the extent to which invigoration of action, and the associated
deployment of distinct cognitive resources, can be attributed specifically
to the observed anticipatory responses in the midbrain/basal ganglia
network goes beyond the immediate goals and scope of the present
study.

The task included 240 trials, 60 trials per condition and was di-
vided into four 9 min sessions (15 trials per condition). Subjects
were told that they would be paid their earnings of the task up to
a total of £35. Before starting with the learning task, subjects did

20 trials of the target detection task in order to get familiarized
with the speed requirements.

Behavioral data analysis

The behavioral data were analyzed using the statistics software
SPSS, version 16.0. The number of correct choices in the target detec-
tion task (correct button press for go conditions and correct omission
of responses in no-go trials) was collapsed across time bins of 10 tri-
als per condition. These measures were analyzed with a three way
repeated-measures ANOVA with time, action (go/no-go) and valence
(win/lose) as factors. In an initial analysis we also included group (in-
side the scanner/outside the scanner) as a between-subject factor.

Reinforcement learning models

We built six parameterized reinforcement learning models to fit to
the behavior of the subjects. All the models assigned each action at on
trial t a probability. This was based on an action weight W(at,st) that

Fig. 1. Experimental paradigm.On each trial one of four possible fractal images indicated the combination between action (making a button press in go trials or withholding a button
press in no-go trials) and valence at outcome (win or lose). Actions were required in response to a circle that followed the fractal image after a variable delay. On go trials, subjects
indicated via a button press on which side of the screen the circle appeared. On no-go trials they withheld a response. After a brief delay, the outcome was presented: a green
upward arrow indicated a win of £1, and a red downward arrow a loss of £1. A horizontal bar indicated of the absence of a win or a loss. On go to win trials a correct button
press was rewarded, on go to avoid losing trials a correct button press avoided punishment, in no-go to win trials a correct withholding a button press led to reward, and in
no-go to avoid losing trials a correct withholding a button press avoided punishment. The schematics at the bottom represent for each trial type, the nomenclature to the left,
the possible outcomes and their probability after a correct response to the target (go choice) in the middle, and the possible outcomes and their probability after withholding a
response to the target (no-go choice) in the right.

156 M. Guitart-Masip et al. / NeuroImage 62 (2012) 154–166

Orthogonal Go/Nogo Task
Guitart-Masip et al (2012) Neuroimage

computations. Thus, if behavior reflects contributions from each
strategy, then we can make the clear, testable prediction that
neural signals reflecting either valuation should dissociate from
behavior (Kable and Glimcher, 2007). Correlates of reward
prediction have most repeatedly been demonstrated in fMRI in
two areas: the ventromedial prefrontal cortex (vmPFC) and the
ventral striatum (ventral putamen and nucleus accumbens) (Del-
gado et al., 2000; Hare et al., 2008; Knutson et al., 2000, 2007;
Lohrenz et al., 2007; O’Doherty, 2004; Peters and Büchel,
2009; Plassmann et al., 2007; Preuschoff et al., 2006; Tanaka
et al., 2004; Tom et al., 2007). Of these, value-related signals in
mPFC are sensitive to task contingencies, and are thus good
candidates for involvement in model-based evaluation (Hamp-
ton et al., 2006, 2008; Valentin et al., 2007). Conversely, the
ventral striatal signal correlates with an RPE (McClure et al.,
2003a; O’Doherty et al., 2003; Seymour et al., 2004), and on
standard accounts, is presumed to be associated with dopa-
mine and with a model-free TD system. If so, these signals
should reflect ignorance of task structure and instead be driven
by past reinforcement, even though subjects’ behavior, if it is
partly under the control of a separate model-based system,
may be better informed.
Contrary to this hitherto untested prediction, our results

demonstrate that reinforcement-based and model-based value
predictions are combined in both brain areas, and more particu-
larly, that RPEs in ventral striatum do not reflect pure model-free
TD. These results suggest a more integrated computational
account of the neural substrates of valuation.

RESULTS

Behavior
Subjects (n = 17) completed a two-stage Markov decision task
(Figure 1) in which, on each trial, an initial choice between two
options labeled by (semantically irrelevant) Tibetan characters
led probabilistically to either of two, second-stage ‘‘states,’’
represented by different colors. In turn, these both demanded
another two-option choice, each of which was associated
with a different chance of delivering a monetary reward. The
choice of one first-stage option led predominantly (70% of
the time) to an associated one of the two second-stage
states, and this relationship was fixed throughout the experi-
ment. However, to incentivize subjects to continue learning

A B Figure 1. Task Design
(A) Timeline of events in trial. A first-stage choice between

two options (green boxes) leads to a second-stage choice

(here, between two pink options), which is reinforced with

money.

(B) State transition structure. Each first-stage choice is

predominantly associated with one or the other of the

second-stage states, and leads there 70% of the time.

throughout the task, the chances of payoff
associated with the four second-stage options
were changed slowly and independently, ac-
cording to Gaussian random walks. Theory
(Daw et al., 2005; Dickinson, 1985) predicts

that such change should tend to favor the ongoing contribution
of model-based evaluation.
Each subject undertook 201 trials, of which 2 ± 2 (mean ± 1 SD)

trials were not completed due to failure to enter a responsewithin
the 2 s limit. These trials were omitted from analysis.
The logic of the task was that model-based and model-free

strategies for RL predict different patterns by which reward ob-
tained in the second stage should impact first-stage choices
on subsequent trials. For illustration, consider a trial in which
a first-stage choice, uncharacteristically, led to the second-
stage state with which it is not usually associated, and in which
the choice then made at the second stage was rewarded. The
principle of reinforcement would predict that this experience
should increase the probability of repeating the first-stage
choice because it was ultimately rewarded. However, a subject
choosing instead using an internal model of the task’s transition
structure that evaluates actions prospectively would be ex-
pected instead to exhibit a decreased tendency to choose that
same option. This is because any increase in the value of the
rewarded second-stage option will more greatly increase the
expected value of the first-stage option that is more likely to
lead there. This is actually the first-stage option that was not
originally chosen.
Given previous work suggesting the coexistence of multiple

valuation processes in the brain (Balleine et al., 2008; Dickin-
son, 1985), we hypothesized that subjects might exhibit
a mixture of both strategies. First, to see learning effects of
this sort in a relatively theory-neutral manner, we directly as-
sessed the effect of events on the previous trial (trial n) on
the choice on the current trial (trial n+1). The two key events
on trial n are whether or not reward was received, and whether
the second-stage state presented was common or rare, given
the first-stage choice on trial n. We evaluated the impact of
these events on the chance of repeating the same first-stage
choice on trial n+1. For reasons outlined above, a simple rein-
forcement strategy [simulated in Figure 2A using the TD algo-
rithm SARSA(l) for l = 1] predicts only a main effect of reward:
an ultimately rewarded choice is more likely to be repeated,
regardless of whether that reward followed a common or rare
transition. Conversely, a model-based strategy (simulated in
Figure 2B) predicts a crossover interaction between the two
factors, because a rare transition inverts the effect of the
subsequent reward.

Neuron

Model-Based Influences on Choices and the Striatum

Neuron 69, 1204–1215, March 24, 2011 ª2011 Elsevier Inc. 1205

Two-Step Task
Daw et al (2011) Neuron
Voon et al (2014) Mol. Psychiatry

an indifference point. To generate normal distributions of the two
control groups a similar bootstrap procedurewas also performed by
randomly sampling with replacement the equivalent of an entire
participant’s choice set (i.e., 256 choices) from the pooled data of
the six control participants within a group (seeMethods for details).
This procedure showed that each amygdala-lesioned participant
had a significantly lower risk premium than her matched control
group, S.M. t(5) = 7.76 P < 0.001; A.P. t(5) = 13.57; P < 0.001
(independent two-sample 2-tailed t tests; Fig. 4).
To quantify loss aversion for each participant, we calculated the

parameter λ such that gambles with adjusted expected utilities of
0.5G + 0.5λ × L are estimated (from a logistic regression) to be
chosen half the time. This parameter gives an indication of how
heavily participants appear to weight losses compared to gains,
inferred from the choices they made. This analysis yielded λ = 0.76
for S.M., and a mean λ for the S.M. control group of 1.52 (SEM =
0.19). For A.P., λ = 1.06 whereas the mean λ for the A.P. control
group was 1.76 (SEM= 0.12). For more details see Table S1.
The values of λ estimated by our analysis show that neither

amygdala-lesioned participant exhibits loss aversion whereas the
control participant λ estimates are close to those found in previous
studies (17, 18). In particular, whereas A.P. is essentially loss neu-
tral, S.M. showsa slightly loss-seekingbehavior.Aproportional shift
toward a less loss-averse behavior is evident also in the S.M.
matched control groupwhen compared to theA.P.matched control
group (Fig. 3 B–D).

Note that loss aversion is a special distaste for mixed gambles
with possible losses, as if losses areoverweighted compared to gains
when valuing gambles. Risk aversion, by contrast, is amore general
aversion to increased variation in outcomes (regardless of whether
they are gains or losses). The risk premium differences shown in
Fig. 4 could be due to either aversion to loss or to general aversion
to taking risk.
These explanations can be separated using two further anal-

yses. The first analysis exploited the fact that in our experimental
design the outcome variance (VAR) of each mixed gain–loss
gamble is orthogonal to the gamble’s EV (i.e., they are uncor-
related) (Fig. 5). This feature of the design allowed us to confirm
that the lesion participants’ willingness to gamble is specific to
loss processing and not to a general reduction in risk sensitivity.
Critically, both lesion participants exhibited a marked dislike for
increasing outcome variance, given a constant level of expected
value. This was manifested in a reduction in gamble acceptance
rates as a function of increases in the gamble’s variance (Fig. 6).
Most importantly, their dislike for increased variance was no
different from that of the controls.
The second analysis uses a different series of risky gambles that

do not have any possible losses. Participants were asked to choose
between accepting a sure amount S or flipping a coin for a “double
or nothing” outcome, in which outcomes 0 and 2S are equally
likely, for different values of S. In this task, there was no significant
difference in the acceptance rate of each lesion participant and
that participant’smatched controls S.M. t(5)= 1.16, P> 0.1; A.P. t
(5) = 0.65, P > 0.1 [independent two-sample 2-tailed t tests (21)].
Both lesion participants thus showed a degree of risk aversion over
gains comparable to the risk aversion of their respective control
group (Fig. S1).

Discussion
The goal of the current study was to test the hypothesis that the
amygdala plays a necessary role in generating loss aversion during
human decision making. Our findings confirmed this idea and pro-
vided additional specificity. Both amygdala-lesioned participants
showed a dramatic absence of loss aversion yet they retained a nor-
mal response to reward magnitude. This pattern of behavior is
consistent with evidence that monkeys with amygdala lesions main-
tain a stable pattern of preference among sets of food items (22),

Fig. 1. Selectivebilateral calcificationof theamygdala (arrows)due toUrbach-
Wiethe disease is evident as loss of signal on these T1-weighted structural MRI
scans of the brains of S.M. and A.P.

Fig. 2. Experimental task design. Participants saw a two-outcome gamble that offered equal (50%) chances of gaining or losing different amounts. We
sampled the entire matrix shown on the Right. Each cell represents the expected value (i.e., EV = 0.5G + 0.5L) associated with each gamble. This task is a
modification of the one used in an fMRI study (18), with the critical difference that our gain/loss range was symmetrical and larger. At the end of the
experiment one trial was randomly selected and paid out according to the participant’s decision during the experiment.

De Martino et al. PNAS | February 23, 2010 | vol. 107 | no. 8 | 3789
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Fig. 1. Sample power (POW) and exponential (EXP) functions, generated from a narrow range of model parameters (see text). The time intervals between 1 and 5 s,
where the models are the most discriminable, are indicated by the round circles. In contrast, the elliptic circles indicate the time intervals (i.e., 15–20 s) that offer the least
discriminability.

(a) Traditional experimentation. (b) Adaptive experimentation.

Fig. 2. Schematic illustration of the traditional experimentation versus adaptive experimentation paradigm. (a) The vertical arrow on the left represents optimization of
the values of design variables before data collection. The vertical arrow on the right represents the analysis and modeling of the data collected, using model selection or
parameter estimation methods, for example. (b) In the adaptive experimentation paradigm, the three parts of experimentation (design optimization, experiment, and data
modeling) are closely integrated to form a cycle of inference steps in which the output from one part is fed as an input to the next part.

2.2. Optimal design

In psychological inquiry, the goal of the researcher is often to
distinguish between competing explanations of data (i.e., theory
testing) or to estimate characteristics of the population along cer-
tain psychological dimensions, such as the prevalence and sever-
ity of depression. In cognitive modeling, these goals become ones
ofmodel discrimination and parameter estimation, respectively. In
both endeavors, the aim is tomake the strongest inference possible
given the data in hand. The scientific process is depicted inside in
the rectangle in Fig. 2a: first, the values of design variables are cho-
sen in an experiment, then the experiment is carried out and data
are collected, and finally, data modeling methods (e.g., maximum
likelihood estimation, Bayesian estimation) are applied to evaluate
model performance at the end of this process.

Over the last several decades, significant theoretical and com-
putational advances have been made that have greatly improved
the accuracy of inference inmodel discrimination (e.g., Burnham&
Anderson, 2010). Model selection methods in current use include
the Akaike Information Criterion (Akaike, 1973), the Bayes fac-
tor (Jeffreys, 1961; Kass & Raftery, 1995), and Minimum Descrip-
tion Length (Grünwald & Pitt, M, 2005; Rissanen, 1978), to name a
few. In each of these methods, a model’s fit to the data is evaluated
in relation to its overall flexibility in fitting any data pattern, to ar-
rive at a decision regarding whichmodel of two competingmodels

to choose (Pitt, Myung, & Zhang, 2002). As depicted in Fig. 2a, data
modeling is applied to the back end of the experiment after data
collection is completed. Consequently, themethods themselves are
limited by the quality of the empirical data collected. Inconclusive
data will always be inconclusive, making the task of model selec-
tion difficult nomatter what datamodelingmethod is used. A sim-
ilar problem presents itself in estimating model parameters from
observed data, regardless of whethermaximum likelihood estima-
tion or Bayesian estimation is used.

Because data modeling methods are not foolproof, attention
has begun to focus on the front end of the data collection
enterprise, before an experiment is conducted, developing meth-
ods that optimize the experimental design itself. Design optimiza-
tion (DO,Myung&Pitt, 2009) is a statistical technique, analogous to
model selectionmethods, that selectively chooses design variables
(e.g., treatment levels and values, presentation schedule) with the
aim of identifying an experimental design that will produce the
most informative and useful experimental outcome (Atkinson &
Donev, 1992). Because experiments can be difficult to design, the
consequences of design choices and the quality of the proposed ex-
periment are not always predictable, even if one is an experienced
researcher. DO can remove some of the uncertainty of the design
process by taking advantage of the fact that both the models and
some of the design variables can be quantified mathematically.

Traditional experimentation ADO 
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A comprehensive account of the causes of alcohol misuse must ac-
commodate individual differences in biology, psychology and envi-
ronment, and must disentangle cause and effect. Animal models1

can demonstrate the effects of neurotoxic substances; however, they
provide limited insight into the psycho-social and higher cognitive
factors involved in the initiation of substance use and progression
to misuse. One can search for pre-existing risk factors by testing for
endophenotypic biomarkers2 in non-using relatives; however, these
relatives may have personality or neural resilience factors that pro-
tect them from developing dependence3. A longitudinal study has
potential to identify predictors of adolescent substance misuse, par-
ticularly if it can incorporate a wide range of potential causal factors,
both proximal and distal, and their influence on numerous social,
psychological and biological mechanisms4. Here we apply machine
learning to a wide range of data from a large sample of adolescents
(n 5 692) to generate models of current and future adolescent alco-
hol misuse that incorporate brain structure and function, individual
personality and cognitive differences, environmental factors (includ-
ing gestational cigarette and alcohol exposure), life experiences, and
candidate genes. These models were accurate and generalized to novel
data, and point to life experiences, neurobiological differences and
personality as important antecedents of binge drinking. By identi-
fying the vulnerability factors underlying individual differences in
alcohol misuse, these models shed light on the aetiology of alcohol
misuse and suggest targets for prevention.

Alcohol misuse is common among adolescents5: slightly over 40% of
all 13–14-year-old adolescents in the USA report alcohol use and 10%
of this age group exhibit regular use. These figures rise to almost 65%
for any alcohol use and 27% who report regular use by age 16 years. This
is of concern as murine models demonstrate that adolescents are more
vulnerable to alcohol-induced neurotoxicity than adults1. Early alcohol
use is a strong risk factor for adult alcohol dependence6 and therefore
identifying inter-individual vulnerabilities and predictors of alcohol use
in human adolescents is of importance. Generating such predictors, how-
ever, is challenging, not least because large sample sizes are needed to

provide accurate estimates of the small effect sizes that prevail in the
biological sciences7,8. Therefore, previous prospective studies, which
typically focus on just one type of risk factor, have necessarily yielded
modest predictions of future alcohol misuse. Moreover, previous clas-
sification approaches incorporating biological data have often been
flawed due to overfitting9,10,11.

Personality measures, particularly those assessing traits conferring
risk for substance misuse, can identify adolescents at high risk of sub-
stance misuse12. Life events in early adolescence, such as parental divorce13,
can also serve as predictors of future alcohol use. A number of candid-
ate genes for alcohol dependence have been identified14, although the
overall risk conveyed by any one polymorphism is small15. Cognitive
factors such as executive function (for example, inhibitory control), but
not attention and visual memory, distinguished non-substance-using
siblings of substance misusers from healthy controls16. Response inhi-
bition was a modest predictor of adolescent alcohol misuse (explaining
about 1% of variance) in a large sample of adolescents17. Until now, there
have been no large-sample prospective studies examining the neural
correlates of alcohol misuse, but there is some evidence of a reduction
in brain activity during tests of inhibitory control for adolescents who
subsequently engaged in heavy alcohol use18.

Here, we construct models of current and future adolescent binge
drinking by combining a wide range of data (Extended Data Table 1)
from the IMAGEN project19,20, a multi-dimensional longitudinal study
of adolescent development, using regularized logistic regression21 (Ex-
tended Data Fig. 1). First (Analysis 1), we identified the characteristics
discriminating 115 14-year-old binge drinkers (a minimum of three
lifetime binge drinking episodes leading to drunkenness by age 14) from
150 14-year-old controls (non-binge drinkers, a maximum of two life-
time uses of alcohol until at least the age of 16; see Extended Data Table 2
for participant details) returning an area-under-the-curve (AUC) receiver-
operator characteristic (ROC) value of 0.96 (95% CI 5 0.93–0.98; see
Extended Data Table 3a for all beta weights). At the optimum point in
the ROC curve, 91% of binge drinkers and 91% of non-binge drinkers
were correctly classified, significantly better than chance (P 5 8.03 10261).
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At the maximum F-score value, this classification accuracy corresponds
to a precision rate of 87% (that is, those identified as binge drinkers
who are actually binge drinkers) and a recall rate of 99% (that is, binge
drinkers that are successfully detected; Extended Data Fig. 2a, b).

The model reported in Analysis 1, although highly accurate, was
dominated by the inclusion of smoking, which often co-occurs with
alcohol use. In Analysis 2, therefore, we removed smoking and re-ran
the analyses (see Extended Data for all additional analyses with smok-
ing included), which resulted in an AUC of 0.90 (95% CI 5 0.86–0.93).
At the optimum point in the ROC curve, 82% of binge drinkers and
89% of non-binge drinkers were correctly classified (P 5 8.8 3 10248).
At the maximum F-score value the precision rate was 87% and the re-
call rate was 89% (Extended Data Fig. 2e, f). The features included in
this model, and their strength of association with group membership,
are displayed in Fig. 1a.

Figure 2a displays the brain regions that most consistently discrim-
inated current binge drinkers from non-binge-drinkers (see Extended
Data Fig. 3 for the contributions of each brain feature). The most robust
brain classifiers were in ventromedial prefrontal cortex (vmPFC) and
the left inferior frontal gyrus (IFG). The vmPFC grey matter volume
was smaller in the current binge drinkers and this group, compared to

controls, also showed decreased activity when anticipating or receiv-
ing a reward, but increased activity when processing angry faces. In the
left IFG, current binge drinkers had smaller volumes and reduced
activity when anticipating and receiving rewards and when processing
angry faces.

The performance of each domain on its own (Analysis 3), both with
and without age-14 smoking, is displayed in Extended Data Fig. 4a. The
History and Personality domains were each accurate classifiers (AUC .
0.8). Next, we sought to quantify the unique contribution of each domain
to the classification of current binge drinkers both with (Analysis 4) and
without (Analysis 5) age-14 smoking. To this end, we iteratively removed
each domain from the full model (re-calculating the optimum elastic
net parameters), and observed the relative reduction in classification
accuracy (Extended Data Fig. 4b, c). The History domain contributed
the greatest unique variance to the model (significant correlations among
features are displayed in Extended Data Fig. 5). The results of external
generalizations of the current binge drinking models with and without
nicotine (Analyses 6 and 7, respectively) are displayed in Extended Data
Fig. 2c, d, g, h.

We have described the profile of current alcohol misusers while also
demonstrating the efficacy of our modelling approach. However, to
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Figure 1 | The relationship between group membership and each feature
that was present in at least 9 folds of the final model. Position on the
horizontal represents the point-biserial correlation statistic (r) between each
feature and group membership. Negative r values indicate that higher scores are
associated with an increased likelihood to engage in binge drinking at 14. Error
bars represent 95% confidence intervals (calculated using 10,000 bootstraps).

a, Analyses 1 and 2, the classification of binge drinking at age 14 years
(n 5 265). b, Analysis 8 predicting binge drinking at age 16 years (n 5 271).
AGN, affective go/no go; hx, history; SURPS, substance use risk profile scale;
SWM, spatial working memory; GMV, grey matter volume; WMV, white
matter volume.
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discussion in the next section). In this context, we use the
term “biological marker” to signify differences that do not
have genetic underpinnings and “endophenotype” when
certain heritability indicators are fulfilled.

Endophenotypes in Genetic Analysis

An endophenotype-based approach has the potential to
assist in the genetic dissection of psychiatric diseases. En-

dophenotypes would ideally have monogenic roots; how-
ever, it is likely that many would have polygenic bases
themselves. Furthermore, the use of endophenotypes in
genetic research must be tempered by the realization that
without controls and limits, their usefulness may be ob-
scured. For example, putative endophenotypes do not
necessarily reflect genetic effects. Indeed, these biological
markers may be environmental, epigenetic, or multifacto-
rial in origin. Criteria useful for the identification of mark-

FIGURE 2. Gene Regions, Genes, and Putative Endophenotypes Implicated in a Biological Systems Approach to Schizophre-
nia Researcha

a The reaction surface (36) suggests the dynamic developmental interplay among genetic, environmental, and epigenetic factors that produce
cumulative liability to developing schizophrenia (9–11, 37). Gene regions where linkage findings are more consistent are in bold, while gene
regions corresponding to candidate genes or endophenotypes are shown in normal lettering (16). Many of these endophenotypes are dis-
cussed in detailed reviews addressing overall strategies for schizophrenia discriminators (38), sensory motor gating (33, 39, 40), oculomotor
function (33, 40–43), working memory (sometimes synonymous with information processing, executive function, attention) (31, 32, 44–46),
and glial cell abnormalities (47). None of the sections of this figure can be definitive; many more gene loci, genes, and candidate endophe-
notypes exist and remain to be discovered (represented by question marks) (47, 48). Linkage and candidate gene studies have been the topic
of recent reviews (15, 16, 49, 50). The figure is not to scale. (Copyright 2003, I.I. Gottesman. Used with permission.)
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Longitudinal study 

•  10,000 adolescents over 10 years 
•  Data sharing 
 



Conclusions 
•  Cost-effective/surrogate markers  

•  Data/code sharing 

•  Education 

•  Collaboration across multiple disciplines 

•  A long way to go…  
 



Directions 

Computational Clinical Science (CCS) Laboratory 
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